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FOREWORD

This report aims to bring to the attention of technical personnel,

both of the Navy and of other agencies engaged in the war effort, certain

new developments in applied mathematical methods. These new methods have

come to be called "Non-Linear Mechanics." This new branch of theoretical

mechanics does not introduce any new postulates but relies upon the same

Newtonian principles commonly used in engineering applications. The only

difference between these new methods and the old ones lies in the mathemat-

ical methods themselves. The old methods, such as that of small motions,

simplify the problem in advance so as to bring it within the scope of linear

differential equations. The general theory of these is known, so that ap-

proximate solutions are obtained by standard methods. It is the purpose of

the new methods to obtain more accurate solutions without recourse to arti-

ficial simplification.

A few definitions and examples will be given so that the subject

may appear somewhat better defined. The general form of a linear differen-

tial equation of the nth order is

d x n - 1  n-2 ddx d x d x dx

dtn + p1 (t) dt ' + p 2 (t) dt-2 + •"+ p±_(t)dt + p.(t)x = Q(t)

where x, the dependent variable, constitutes the unknown function to be de-

termined by integration, and t is the independent variable, for example,

time. In a great majority of dynamical problems x is a spacial coordinate.

The coefficients p1 (t) ... p,(t) are known functions of t. Q(t), designated

sometimes as a forcing function, is also a known function of t. According to

whether Q(t) = 0 or Q(t) # 0 the linear equation is called homogeneous or

non-homogeneous.

In many engineering applications all the functions p1(t) ... p,(t)

are constant; the linear differential equation is then said to have constant

coefficients. This is the simplest form of a linear differential equation

and its solution, as is shown in elementary texts, is reduced to that of

solving an algebraic equation. On the other hand, in applications linear

differential equations with variable coefficients are often encountered. For

instance, the well-known Mathieu equation is

Y + (a2 + b cospt)x = 0

This equation has a great variety of applications, such as oscillations of

locomotive mechanisms, theory of modulation in radio circuits, oscillations

of membranes with elliptic boundaries, and diffraction of light. Although



the theory of the Mathieu equation is much more difficult than that of equa-

tions with constant coefficients, it is still a linear differential equation.

The basic feature of such equations is that they obey the so-called
principle of superposition. Thus, if a system is governed by a linear differ-
ential equation and is capable of oscillating in certain modes, the motion
will take place as if each component oscillation with a certain frequency ex-
isted alone, not influenced by the presence of oscillations with other fre-
quencies. This constitutes a considerable simplification which permits a
physicist to be guided by intuition without having to rely continuously on
the mathematical methods. In order to be able to proceed in this manner, how-
ever, one must be certain that the differential equations are linear. In this
connection there arise frequently serious difficulties as to the limits of
validity of the differential equation describing a certain physical phenome-

non. Clearly the only criterion of validity of a certain mathematical law is
its agreement with the observed facts. If this agreement is good, within a
certain range of the phenomena under consideration, it is natural to conclude
that the differential equation correctly describes the phenomena and that the
hypotheses which were made in obtaining the equation are correct. If, how-
ever, for some other range the same differential equation ceases to give a
satisfactory agreement with observation this generally indicates that certain
assumptions or idealizations which were sufficiently correct for a certain
range cease to be correct when the range of observation is extended. Con-
cepts of constant electric resistance of a conductor, of a constant spring

constant, of a rectilinear characteristic of an electron tube, and so on, ap-
pear very often as idealizations valid only in a certain restricted range.

If the problem is investigated within that range the idealized linear differ-
ential equations give a reasonably good agreement with observation. If, how-
ever, the same phenomenon is studied in a somewhat larger range, in which the
assumed idealizations cease to be true, the departures between the theory and
the observed facts become more and more evident, as the range of the investi-

gation is extended. The reason for such discrepancies is clearly that the

problem has been over-idealized, and a more correct form of differential equa-

tion must be employed. In such cases the correct differential equations are

usually non-linear. In some cases, as will appear later, non-linear equations

appear at the very outset of the problem. In such cases it is impossible to

describe the phenomenon mathematically by means of linear differential equa-

tions for any range, however small.

A few examples which follow illustrate this general situation.



THE PENDULUM

The exact differential equation of the simple pendulum is

6 + -sin = 0 [1]
L

This is a homogeneous non-linear differential equation of the form

6 + (0)e = 0

with a variable "spring constant"

(0) = - 1 - 0 +06

resulting from the expansion of sin 0 in a power series. If we assume that

all terms beginning with 02/6 are negligible we obtain the "zero approximation"

9(e) = LL

which gives

+ -- 0 = 0 [2]
L

This is the well-known elementary equation of a "linearized" pendulum having

a fixed period T = 2r/Ig. For the next, or first, approximation we assume

0(0) = - ). This gives a non-linear differential equation of the form

+ [t1 - 0 e = 0 [31

The spring constant in this case does not remain constant but diminishes with

increasing 0. In this manner we obtain a more nearly correct representation

of the motion. By retaining a greater number of terms in the power expansion

of sin 0 we obtain still greater accuracy but the problem becomes more com-

plicated. In practice even the first approximation [3) gives an error of

less than 1 per cent for angles of the order of 30 degrees.

FROUDE'S DIFFERENTIAL EQUATION OF ROLLING

The oscillations of a ship in still water, according to Froude, are

given by the equation

I0 + B1 0 + B 26 2 + D h(0) = 0 [4]

in which I is the moment of inertia of the ship about a longitudinal axis

through the center of gravity,

B1, B 2 are the so-called Froude's coefficients of resistance to rolling,

D is the displacement, and

h(O) is the variable lever arm of the righting couple.
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This equation is non-linear due to the presence of the term B 2G
2 and the term

h(O) which departs slightly from a linear function of 0. For small angles 0,

h(O) is approximately of the form h(O) = h00, where ho is the initial meta-

centric height. The linearization of this term is therefore permissible in

the range of small angles for which h0 remains substantially constant. As

regards the other non-linear term B 2 
2, it is generally uncertain whether we

can "linearize" [4] by dropping this term altogether. In case this can be

done for a particular ship, the problem is reduced to a simple linear equation

I + B16 + DhoO = 0 [51

If, however, the experimental evidence is such that the term B 2,
2 is of the

same order as B1i, the differential equation is

10 + B1 6 + B 2 02 + Dhoe = 0 [6]

and the difficulty of dealing with a non-linear differential Equation [6]

cannot be avoided.

THE WILLIAMS BLAST GAGE

The differential equation of the Williams gage used for the inves-

tigation of explosive blast in air is

+ P Po[L 1] = P(t) [7]

where m, A, po, L, and y are constants and P(t) is a known function of time.

Introducing the variable y = x/L, this equation acquires the form

S+ k 1 - 1 y = Q(t) [7a]

This is a non-homogeneous non-linear equation of the form

Y + (y)y = Q(t) [7b]

where (y) = Y - 1 ; k is a constant and 0 < y < 1.
y [(I -A)

OSCILLATIONS OF A SPHERICAL GAS-FILLED CAVITY IN A FLUID

The differential equation of the phenomenon is

3 1 R2 + aR3 b
+ + aR3 - b = 0 [8]
2R R(y- )

where R is the radius of oscillating cavity and a, b, y are certain constants.

This equation can be written as

3R
R+ R + (R)R = 0 [9]

2R
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where the non-linear spring constant 4(R) = aR - b/R 8r - 2 and the coefficient

of damping b = 3R/2R. Equation [9] is also a homogeneous non-linear differen-

tial equation, where the non-linearity is found in both the spring-constant

term and in the damping coefficient.

DIRECTIONAL STABILITY OF SHIPS

The differential equation of the initial azimuthal motion of a ship

from a straight course with the rudder amidships is

Ja + C(a) - M(a) = 0 [10)

where J is the moment of inertia of the ship about the vertical axis through

its center of gravity,

C(&) is the resistance to turning,

M(a) is the moment of the leeway force, and

a is the angle of the initial deviation.

The function C(&) is not known at present; it is probably proportional to

some power of &; from physical considerations the linearization of this term

by an expression of the form C(&) = Coo is not objectionable for small ranges

of a.

As regards the term M(a), its linearization by a term of the form

Moa leads certainly to incorrect results; in fact this would mean that for an

increasing a the term Mo0 , where Mo is a certain constant, increases indefi-

nitely. Observation shows that for an increasing a the couple M(a) passes

through a maximum for a relatively small value of a and becomes zero there-

after, when the line of action of the resultant of the leeway forces recedes

toward the center of gravity. This situation can be described more correctly

by an approximate expression of the form

M(a) = Moa - M 1 a3

Hence a more correct differential equation for the directional stability is

of the form

Ji + Coa - (Mo - Mia2)a = 0 [11]

This is a non-linear differential equation in which the non-linearity is

localized in the spring constant (M0 - Ma 2 ) which decreases with the angle

a. In this case the spring constant is negative inasmuch as a ship proceed-

ing initially on a straight course is in unstable equilibrium.

111M "i Wil 111W , JIM M
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PARASITIC OSCILLATIONS OR "HUNTING" IN CONTROL SYSTEMS

Somewhat different non-linear phenomena occur when the damping term

of a dynamical system is initially negative and increases with increasing am-

plitudes so as to become ultimately positive for sufficiently large values of

the dependent variable. Phenomena of this kind are amenable to the Van der

Pol equation

S- X(1 - x2) + x = 0 [12]

The equation of Rayleigh, discovered in connection with acoustic phenomena,

x - (A + Bi2)i + Z = 0 [13]

is known to reduce to Van der Pol's equation by a change of variables, so

that the two equations have analogous features. These equations have a very

extensive field of application in connection with self-excited oscillations

in electron-tube circuits.

A few years ago, in connection with a ship stabilization research

program, it was discovered that under certain conditions the blade angle on

the pump controlling the transfer of ballast between the tanks begins to

flutter, interfering seriously with the efficiency of operation. A detailed

analysis of this effect is given in Section 31 of this report. It is suf-

ficient to mention here that the non-linear differential equation of this

parasitic effect is of the form

J - [(b - a ) - a 3 2] + co = 0 [14]

where J is the moment of inertia of the ballast, including tanks and ducts,

aland as are the coefficients in the expression giving the hydrodynamic

couple exerted by blades on the ballast,

b is the coefficient of the natural damping (friction), and

c is the coefficient of static stability of the water ballast.

Equation [14] is seen to be Rayleigh's equation mentioned previously.

These few examples show the importance of the methods of non-linear

mechanics for the solution of naval problems. As to the question where and

how to use these methods, answers can be given only for specific cases. Each

problem must be formulated explicitly and then examined to determine whether

simplifying assumptions can be introduced to linearize the problem without

the loss of any essential features. In cases where this is not possible one

must face the situation arising from the essential non-linearity of the phe-

nomenon and apply the more laborious methods of non-linear mechanics. The

present report introduces the student who is familiar with standard methods

of attack on linear problems to these more advanced methods.
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INTRODUCTION TO NON-LINEAR MECHANICS

INTRODUCTION

Practically all differential equations of Mechanics and Physics are

non-linear; in the applications linear approximations are frequently used.

The Method of Small Motions is a well-known example of the "linearization" of

problems which are essentially non-linear. With the discovery of numerous

phenomena of self-excitation of circuits containing non-linear conductors of

electricity, such as electron tubes, arcs, gaseous discharges, etc., and in

many cases of non-linear mechanical vibrations of special types the Method of

Small Motions becomes iradequate for their analytical treatment. In fact the

very existence of these oscillations in a steady state indicates that there

is an element of non-linearity preventing the oscillations-from building up

indefinitely, which by energy considerations is obviously impossible. In ad-

dition to this there is another important difference between these phenomena

and those governed by linear equations with constant coefficients, e.g., os-

cillations of a pendulum with small amplitudes, in that the amplitude of the

ultimate stable oscillation seems to be entirely independent of the initial

conditions, whereas in oscillations governed by linear differential equations*

it depends upon the initial conditions.

Van der Pol (1)** was first to invite attention to these new oscil-

lations and to indicate that their existence is inherent in the non-linearity

of the differential equations characterizing the process. This non-linearity

appears, thus, as the very essence of these phenomena and, by linearizing the

differential equation in the sense of the method of small motions, one simply

eliminates the possibility of investigating such problems. Thus, it became

necessary to attack the non-linear problems directly instead of evading them

by dropping the non-linear terms.

Although the early discoveries of Van der Pol invited the attention

of mathematical physicists to these new problems, very little was done theo-

retically in the following years in the way of further generalizations of Van

der Pol's original theory. On the other hand, the accumulation of experimen-

tal data continued at a rapid rate and each additional problem had to be

treated mainly on its own merits and by methods which were not unified into

one central doctrine. The situation was similar in some respects to that

* Unless otherwise specified the term "linear differential equations" will be used in the following

in referring to those with constant coefficients.

Numbers in parentheses indicate references on page 131 of this report.
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which existed in the early stage of development of the theory of differential

equations when, prior to the advent of Cauchy's general theorems of existence,

a few isolated methods of direct integration were the only ones available.

Later, Cauchy's theorems made it possible to obtain a general theory of lin-

ear differential equations.

About fifteen years ago certain Russian scientists directed their

attention to a further development of methods of Non-Linear Mechanics with a

view toward obtaining a more general basis for a mathematical treatment of

numerous experimental facts to which modern electronic circuits and apparatus

contributed a large part. A line of approach was soon found in the classical

researches of Henri Poincar6 who may be considered as a real forerunner of

modern Non-Linear Mechanics. In his two treatises "Sur les courbes d6finies

par une 6quation diff6rentielle" (2) and "Les m~thodes nouvelles de la m6can-

ique c6leste" (3) *the great analyst opened two major avenues of approach to

the solution of problems of Non-Linear Mechanics, i.e.,

1. The topological methods of qualitative integration,

2. The quantitative methods of approximations by expansions in terms

of suitable parameters.

These two trends persist in modern developments of Non-Linear Me-

chanics, frequently supplementing each other in some respects. The adapta-

tion of these general theories, developed originally for the purposes of

Celestial Mechanics, to the problems of applied science in general is the

work of Mandelstam, Papalexi, Andronow, Kryloff, Bogoliuboff, and a number

of other Russian scientists working jointly in this field during the past

fifteen years or so.

The two major trends referred to, the topological method and the

quantitative method of successive approximations, have their respective mer-

its as well as limitations. The topological methods are based on the study

of the representation of solutions of differential equations in phase space;

the latter is mapped by means of point-singularities and certain singular

lines so as to obtain certain topological domains in which the form of the

integral curves - the phase trajectories - can be investigated by relatively

simple geometrical methods.

The main advantage of the topological methods lies in the fact that

insofar as they deal with trajectories, and not with laws of motion, they

make it possible to obtain, so to speak, a bird's eye view of the totality of

all possible motions which may arise in a given system under all possible con-

ditions. Just as a topographic map of a locality gives an idea as to its

three-dimensional form - its peaks, valleys, divides, and other features - a
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topological picture of a domain of integral curves permits ascertaining at

once in which regions of the domain the motions are periodic and in which

they are either aperiodic or asymptotic. Likewise the critical thresholds

or "divides" which separate the regions of stability and instability can be

easily ascertained by these methods.

The principal limitation of topological methods, as of other qual-

itative methods, is that they do not lend themselves readily to numerical cal-

culations, insofar as they deal with geometrical curves, the trajectories, and

not with the laws of motion which are of interest for numerical calculations.

The quantitative methods, on the other hand, possess the advantage

of leading directly to numerical solutions which are of importance in astro-

nomical as well as in engineering applications. These quantitative methods,

however, inevitably narrow the field of vision to a relatively limited region

of the domain. This frequently limits the grasp of the situation as a whole,

particularly if the system possesses critical thresholds, the separatrices,

the branch points of equilibrium, etc., at which the qualitative features of

the phenomena undergo radical changes; such critical conditions are of common

occurrence in Non-Linear Mechanics.

Both methods, however, very frequently supplement each other. The

topological method permits a rapid exploration of the whole field of integra-

tion, and the quantitative method leads to numerical results, once a particu-

lar range of the problem has been selected for study.

Another point of great importance in Non-Linear Mechanics is the

question of stability. The fundamental theorem in this connection is due to

Liapounoff (4). In Non-Linear Mechanics this theorem plays a role similar to

the Routh-Hurwitz theorem for linear systems. Its formulation is closely re-

lated to the question of singularities of differential equations. An inter-

esting feature of this theorem is the fact that, in a great majority of cases,

it permits establishing criteria of stability for a non-linear system from

the equations of the first approximation, which are linear; this fact simpli-

fies the problem appreciably.

This report reviews the progress accomplished in Non-Linear Mechan-

ics approximately up to 1940; its preparation was greatly facilitated by the

availability of the following two works in the Russian language.

1. "Theory of Oscillations," by A. Andronow and S. Chaikin,

Moscow, 1937.

2. "Introduction to Non-Linear Mechanics," by N. Kryloff and

N. Bogoliuboff, Kief, 1937.
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On a number of questions, particularly those treated in Part III,

the original publications had to be consulted. In view of the fact that the

literature, in Russian alone, comprises more than 2000 pages, to say nothing

of the earlier publications of Poincar6, Liapounoff, Bendixson (5), Birkhoff

(6), Van der Pol, and others, no attempt was made to present a complete ac-

count of what has been accomplished in this field. For that reason the report

is limited only to a few selected topics which seem to offer more immediate

applications on the one hand, and which do not require too abstract mathemat-

ical generalizations on the other. It is believed that in its present form

the report is within the grasp of an average reader having a general knowledge

of the theory of ordinary differential equations in the real domain.

The report as a whole falls into four major subdivisions:

Part I, published here, is concerned with the topological methods;

its presentation substantially follows the "Theory of Oscillations" (19). The

material is slightly rearranged, the text condensed, and a number of figures

in this report were taken from the book. Chapter V, concerning Lienard's

analysis, was added since it constitutes an important generalization and es-

tablishes a connection between the topological and the analytical methods,

which otherwise might appear as somewhat unrelated.

Part II, to be published soon,* gives an outline of the three

principal analytical methods, those of Poincar6, Van der Pol, and Kryloff-

Bogoliuboff.**

Part III deals with the complicated phenomena of non-linear reso-

nance with its numerous ramifications such as internal and external subhar-

monic resonance, entrainment of frequency, parametric excitation, etc. This

subject is still in a state of development, and the classification of the nu-

merous experimental phenomena is far from being definitely established. Much

credit for the experimental discoveries and theoretical studies of these phe-

nomena is due to Mandelstam and Papalexi, and the school of physicists under

their leadership. The first four chapters of Part III represent the applica-

tion of the quasi-linear theory of Kryloff and Bogoliuboff to these problems

and the last three concern the developments of Mandelstam, Papalexi, Andronow,

Witt, and others, following the classical theory of Poincare.

Finally, Part IV reviews the interesting developments of L. Mandel-

stam, S. Chaikin, and Lochakow in the theory of relaxation oscillations for

large values of the parameter p. This theory is based on the existence of

quasi-discontinuous solutions of differential equations at the point of their

"degeneration," that is, when one of the coefficients approaches zero so that

Parts II, III, and IV will follow as separate Taylor Model Basin reports.

* During the preparation of this report there appeared a free translation of extracts of the Kryloff
and Bogoliuboff text by Professor S. Lefschetz, Princeton University Press, 1943.



the differential equation "degenerates" into one of lower order. A consider-

able number of experimental facts are explained on the basis of this theoret-

ical idealization.

In going over this report the reader will notice that the electri-

cal examples are more numerous than the mechanical ones. The reason for this

situation is twofold. First, electrical non-linear oscillations constitute

generally useful phenomena that are utilized in radio technique, electrical

engineering, television, and allied fields, whereas most of the known mechan-

ical non-linear phenomena are of a rather undesirable, parasitic nature.

Second, the determination of the parameters and characteristics is generally

much easier in electrical than in mechanical problems, particularly when a

mechanical system is relatively complicated. This does not mean, of course,

that this state of things will always persist; in fact, mechanical engineers

are becoming more and more concerned with non-linear problems (7), (8), (9),

and the lack of any appreciable progress at present is not due to a lack of

interest on their part but rather to the absence of a theory sufficiently

broad to cover the various cases encountered in practice.

It is difficult to write a relatively short report on a subject of

this scope in a form that will be satisfactory to all readers. A mathemati-

cian will undoubtedly find a series of drawbacks in the presentation of pure-

ly mathematical matter; the proofs of a number of theorems are omitted. Fre-

quently more rigorous theorems and criteria are replaced by rather intuitive

definitions and statements, and so on. It is probable that the mere idea of

applying the relatively complicated and laborious methods of Poincar6 and

Lindstedt for the purpose of explaining the well-known performance of a therm-

ionic generator or of a simple mechanical system with non-linear damping or

a non-linear spring constant may appear to an engineer pedantic and hence

superfluous. On the other hand, it cannot be denied that in the past theo-

retical generalizations have been always most fruitful in the long run, al-

though during the initial stages of development, they appeared to contempo-

raries somewhat laborious and confusing. It is sufficient to mention as an

example the modern theory of electronics with its numerous ramifications in

the fields of radio-technique, television, controls, etc. In this case, be-

tween the spectacular experimental discoveries of Hertz, Marconi, Fleming,

Lee de Forest, and others, there intervened the less spectacular but not less

important theoretical work of Richardson, Langmuir, and Shottky on thermionic

emission, which, in turn, was based on the earlier statistical theory of Max-

well and Boltzmann. This permitted later a more rigorous quantitative treat-

ment of these phenomena. a
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Very likely the present trend toward a codification of theoretical

knowledge in the field of non-linear mechanics will bring about a further

progress resulting from a more general viewpoint on the whole subject. It

must be borne in mind, however, that the period of codification in non-linear

mechanics has existed only for about the last fifteen years. Hence, we are

witnessing at present only the important initial stages of these studies

rather than their final formulation.

It is hoped that this review will attract the active attention of

applied mathematicians, physicists, and engineers, for the new methods seem

to affect all branches of applied science either by offering more accurate

solutions of old problems or by making possible an attack upon new problems

beyond the reach of the older mathematical methods.

The preparation of this report was facilitated by valuable discus-

sions and suggestions on the part of a number of mathematicians and mathe-

matical physicists who showed an interest in this work. The writer is

indebted to A. Franck and M. Levenson who were most helpful in connection

with the critical editorial work and to Professors E.H. Kennard, W. Hurevicz,

S. Lefschetz, and J.A. Shohat. The cooperation of the Applied Mathematics

Panel of the National Defense Research Committee, Dr. W.W. Weaver, Chairman,

and of the Applied Mathematics group at Brown University, Dean R.G.D. Richard-

son, Chairman, is especially acknowledged.



PART I

TOPOLOGICAL METHODS OF NON-LINEAR MECHANICS

CHAPTER' I

PHASE TRAJECTORIES OF LINEAR SYSTEMS

1. PHASE PLANE AND PHASE TRAJECTORIES; LINEAR OSCILLATOR

Consider the differential equation of a harmonic oscillator

mi + ex = 0, (c > 0) [1.1]

where m and c are constants. Its integral is

x = A cos (wo t + €) [1.2]

where A and € are constants of integration determined by the initial condi-

tions at t = 0; and we = Vc/m is the angular frequency.

Since the system is conservative, the integral of energy exists.

In fact, multiplying [1.1] by & and integrating we get

1 m2 1 2
-x + cx = h [1.3]

2 2

Equation [1.3] expresses the law of conservation of energy: The sum of the
1 2 12

kinetic, mi2, and of the potential, cZ2, energies of the system remains

constant throughout the motion. Putting & = y, [1.3] can be written in the

form

2 2

a2 + 2 =[1.4]

where a = 12 h/c, = VS-h/m. Equation [1.4] represents an ellipse having a

and # as semi-axes; see Figure 1.1. The plane of the variables z, y is

called the phase plane.

The same result is obtained by starting with the integral [1.2] of

[1.1]. By differentiating [1.2] we have x = -Aw o sin (wot + 0) and noting

that for one single particle the phase angle 0 can be made equal to zero by

a suitable choice of the origin of time, two equations result

x = A coswot; , = y = - Awo sin w ot [1.5]1

The elimination of t between Equations [1.51 gives

2 2
2  y-- 1 [1.6]

A2 A2W 2
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which is identical with [1.4], provided

A = 2h= ac and Aw =

It follows that wo = 7--.
Although the result is the same, the derivation of [1.4] and [1.6]

has been different. Equation [1.6] was obtained from the solution of the dy-
namical Equation [1.1], whereas [1.4] results from the law of conservation of
energy, which is the first integral of the dynamical equation.

In both [1.4] and [1.6] time does not appear explicitly; they ex-

press, therefore, a trajectory in the phase plane, the phase trajectory, or

simply, trajectory, where x and y = 2 are considered as coordinates in that
plane.

The uni-dimensional real motion of a particle oscillating along the

x-axis according to the sinusoidal law x = A cos wot is thus represented in

the two-dimensional phase space, the phase plane, by elliptic trajectories,

described by the representative point R situated at the extremity of the ra-

dius vector r. The projection of R on the x-axis gives the actual position x

of the oscillator, and the projection on the y-axis gives its velocity y = i

at the instant t. In general, if some other initial condition is chosen,*

another ellipse E, is obtained, concen-

Y:i tric with the first one and having the

Eo E, same ratio of semi-axes /or = c7m= w ,

inasmuch as this ratio depends only on

the constants of the system and not on
the initial conditions. Thus, in this

v case, the phase trajectories representing

the motion are a family of concentric el-

lipses having a constant ratio of semi-

axes. These are shown in Figure 1.1.

Figure 1.1 This representation frequently

offers advantages as compared to the

usual plot of coordinates against time in that it gives an idea of the topol-

ogy of trajectories in the phase plane. As we shall see later, it enables

one to visualize at once all possible motions which may arise in a system

with zones separating motions of one type from those of an entirely different

type.**

* Such initial conditions which are represented by points situated on the same trajectory are to be
excluded inasmuch as they represent the same motion with a different phase; see Section 3.

- The representation of motion by trajectories in the (x,i) phase plane will be most frequently used
in what follows. In some cases, however, different variables may be preferable. Unless specified to
the contrary, by the phase plane we shall always mean the plane of variables x and z.
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2. PHASE VELOCITY

The velocity of the point R is called the phase velocity. If r is

the radius vector from V to R, clearly the phase velocity v = dr/dt = ix + j

where T and j are the unit vectors along the x, y axes of Figure 1.1. With

the use of [1.5] we get

= i -Am o sinot] + j[ - A2 cos t] [2.1]

from which it follows that the phase velocity v never becomes zero if A # 0,

inasmuch as sin mot and cos wot cannot be zero simultaneously, the case o =

0 being excluded. Thus the phase velocity v may only vanish when A = 0; this

is possible only when h = 0. In other words, this happens only when the par-

ticle is placed initially at x = 0 with zero velocity (i = y = 0). This con-

dition corresponds to the center V of the ellipse. On the other hand, for

this point the force kx also vanishes. We are, thus, led to identify the

point V with the position of equilibrium of the system. One may surmise that

this position of equilibrium is stable although this question needs further

consideration.

3. THEOREM OF CAUCHY; SINGULAR POINTS; TRAJECTORIES AND MOTIONS

Cauchy's Theorem of Existence for the solution of a differential

equation will play an important role in the following. The proof of this

theorem can be found in any textbook of Analysis; for this reason it is suf-

ficient to give here only its formulation.

Consider a differential equation of the n order

x(0_ d nx t(n -1)

dt" f(t, x, , , X [3.1]

The theorem of Cauchy states: There exists a unique analytic* solution of

[3.1] in the neighborhood of t = to such that the function x and its (n - 1)

derivatives acquire for t = to the set of prescribed values xo, xo,'" ",

(n-1), provided the function f(t, x, x, .., x( - )) is analytic in the neigh-

borhood of this set of values.

It is obvious that [3.1] is equivalent to a system of n equations

of the first order

dx y dy= y_ f (t x, y, " " , n- 1) [3.2]
dt ' t dt

* Analytic at a given point means, admitting a Taylor series about the point.

, 1 lii, , I b N



10

which is a special case of the system

dYi - fi(t, Yl, y 2, , yn), i = 1, 2, n [3 3]
dt

In applications, t usually represents time, the other variables representing

coordinates of a point in the phase space of a dynamical system. Of partic-

ular importance is the case of [3.1] and system [3.2] in which the function f

does not depend on time t, and is a function of x, 5, .. , X(n" - , or y, y2 '
S, y,, alone. From a physical standpoint, this means that the system in

question is "autonomous," that is, one in which neither the forces nor the

constraints vary in the course of time. This will be assumed in what follows.

Henceforth we shall be concerned mainly with systems with one de-

gree of freedom which are represented in the phase plane by phase trajectories

as previously explained. The differential equations are of the form

ddydx = P(x,y); Q(x,y) [3.4]
dt dt

A differential equation of the second order

x = Q(x,X)

can be reduced to the form [3.4] by putting y = x, so that one obtains

dx y ; dy Q(z,y) [3.4a]
dt dt

It is to be noted that one will frequently encounter dynamical equations of

the more general form [3.4].

Upon eliminating the independent variable t between the Equations

[3.4] one obtains one equation

dx dy
P(x,y) Q(x,y)

which gives the slope dy/dx of the tangent to the phase trajectory passing

through the point (x,y).

We shall often speak of the point R(x,y), the representative point,

as moving along the trajectory. By this we mean that the motion of this

point is governed by the law expressed by [3.4] or, more particularly, by

[3.4a]. Since time does not enter explicitly at the right in [3.4], the gen-

eral solution of [3.4] can be written as

x = 0(t - t o, x0, Yo) -- x(t)
[3.6]

y = 0 (t -t o , x o, Yo) y(t)

so that the trajectory passing through the point (xo, yo) at t = to may also

be obtained from [3.6] by eliminating (t - to ).



The topological methods studied in Part I will deal with the trajec-

tories [3.5], whereas the analytical methods outlined in Part II will be con-

cerned with the differential equations of motion [3.4]. In some cases it is

useful to apply both methods, so as to obtain a more detailed picture of the

behavior of a given dynamical system; in such cases [3.5] gives a qualitative

idea of the nature of the trajectories in various regions of the phase plane,

whereas Equations [3.4] yield the actual motion starting from given initial

conditions. Such a procedure is particularly useful when a dynamical system

possesses certain critical thresholds or "divides," in which case the appli-

cation of [3.5] permits a preliminary qualitative study of the nature of the

trajectories in various domains of the phase plane before the actual integra-

tion of the dynamical Equations [3.4] is undertaken.

In the following, we shall make use of the concept of singularities

of differential equations, and therefore we shall find it expedient to make

the following definitions.

A. A point (x0 ,y0 ) for which P(xo, yo) = Q(xo, yo) = 0

simultaneously is called a singular point.

B. Any other point of the phase plane to which Definition A

does not apply is called an ordinary point.

From these definitions it follows that an ordinary point is char-

acterized by a definite value of the slope of the tangent to a phase trajec-

tory passing through that point. For a singular point, on the contrary, the

direction of the tangent is indeterminate and the trajectory corresponding

to [3.4] or [3.4a] degenerates into a single point, the singular point itself.

Using these definitions we can formulate the theorem of Cauchy in

the following form: Through every ordinary point of the phase plane there passes one and

only one phase trajectory.

One can also consider Equations [3.4] as defining a vector field

with components dx/dt, dy/dt which determine a non-vanishing vector for any

ordinary point (x,y) of the field. For a singular point (xo,yo) we have

P(xo, yo) = Q(xo, y0) = 0, hence, both components dx/dt, dy/dt vanish. More

specifically, if the vector field is a velocity field, it is clear that a

singular point is a point at which the representative point is at rest.

In a number of dynamical problems for which [3.4a] is applicable,

an additional interpretation can be given. A singular point in this case oc-

curs when y = 0, dy/dt = 0, that'is, when both the velocity and acceleration

of the system are zero; this clearly defines an equilibrium condition. We

are thus led to identify the singular points in such a case with the points

of equilibrium of a dynamical system.

_~__~__ _IN



It follows from the preceding definition that if (xo, yo) is a sing-

ular point, a trajectory passing through an ordinary point (x,y) at a certain

instant will never reach (xo,yo) for any finite value of the time parameter

t; for the only trajectory passing through the singular point (x0, y0) is the

degenerate trajectory consisting of this point alone. It may happen, however,

that a proper trajectory, that is, one which consists of more than one point,

may approach a singular point either for t = + oo or t = - -, which means that

lim x(t) = xo and lim y(t) = yo for t = + co or t = - cc. It is to be under-

stood that, when we say that a trajectory "approaches" a point (xo, yo), we

mean that a representative point following this trajectory in accordance with

[3.4] approaches the point (x, yo).

Our main concern will be the study of the behavior of trajectories

in the neighborhood of singularities. This question is studied in more.de-

tail in the following sections. It may be useful, however, to give at the

outset a brief geometrical description of the behavior of trajectories in the

neighborhood of the four singularities with which we shall be concerned,

leaving a more complete analysis of this subject to a later iection.

1. A vortex point V is a singularity which is not approached by any

trajectory. Point V in Figure 1.1 gives an example of a vortex point. Sec-

tion 1 illustrates that a vortex point is surrounded by a continuum of closed

trajectories such that none approaches it. In this example, the vortex point

appears in connection with the elliptic trajectories of the differential equa-

tion, i + w02 x = 0. We shall see later that vortex points may occur in.con-

nection with equations of a more general form, in which case the trajectories,

while being closed, are not necessarily ellipses. In all cases, however, a

vortex point V is characterized by the following two

conditions:

A3  A2  a. the trajectories are closed, enclos-

ing the singularity,

b. there is a continuum of these trajec-

tories.

2. A saddle point S is a singularity which is
approached by four trajectories forming two distinct

analytic curves, AI A2 and A3 A 4, as shown in Figure

3.1. Two of these trajectories, AIS and A2S, approach

the saddle point S for t = + o; two others, A3S and

A4S, approach S for t = - o, which is equivalent to

saying that the representative points on these tra-

Figure 3.1 jectories, A 3 and A 4, move away from S. Between these
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four isolated trajectories, there exist four re- K, K

gions containing continua of hyperbolically-shaped ,

trajectories which do not approach S. The repre- /

sentative point moves along these trajectories in / F

the direction of the arrows in conformity with the I

directions indicated on the asymptotic trajector-

ies A1, A 2, A,, A 4, which appear, thus, as "divides"

for the four regions.

In Section 4 we shall see that this sit- Figure 3.2

uation arises, for instance, when one considers

the equation mi - cx = 0 of unstable motion. In Section 18 a general criter-

ion for the existence of a saddle point will be given for systems of the

form [3.4].

3. A focal point F is a singularity which trajectories approach, with-

out any definite direction, in the manner of the spirals K, and K 2 shown in

Figure 3.2. The radius vector r of the spirals decreases as R approaches F,

but the direction of approach is indeterminate since a spiral trajectory

winds around a focal point F an infinite number of times as the point R ap-

proaches F. There exists an infinity of spiral trajectories one and only one

of which passes through every ordinary point of the phase plane. If the spi-

rals approach F for t = + co, the point F is called a stable focal point. If

the focal point is approached for t = - 0 the direction of motion on the tra-

jectories, as shown by the arrows in Figure 3.2, is reversed so that the tra-

jectories "leave" the focal point. The point F is then called an unstable

focal point.

In Section 5 an example of motion in the neighborhood of a focal

point will be given in connection with the equation i + 2bx + wo x = 0 of a

damped oscillatory motion (b
2 - W02 < 0); a more general criterion for the

existence of a focal point in the case of the sys-
R K2  tem [3.4] will be given in Section 18.

D r K,
4. A nodal point N is a singularity which

is approached by trajectories in the manner of the

curves K1 and K 2 of Figure 3.3, so that when r 4 0

"N the direction of the tangents to the trajectories

approaches definite limits, e.g., the straight

line DD. According as the point N is approached

D for t = + o or t = - cc, the nodal point is called

stable or unstable; in the latter case the direc-

Figure 3.3 tion of the arrows in Figure 3.3 should be reversed.

.. ____~ ~_____~._.. _~._~~ IIIYYIIIIIII-- IIIII ,, 11 YulI,,
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An example of trajectories of this kind is given in Section 6

for the case of an aperiodic damped motion corresponding to the equation

x + 2bx + wo'x = 0 when b2 - w 2 > 0; a more general criterion is indicated

in Section 18.

It may be useful to add a remark concerning the physical interpre-

tation of some of the preceding definitions. When we speak of a trajectory

passing through an ordinary point (xo,yo0 ) of the phase plane, we frequently

understand by this that we wish to consider the motion as starting from given

initial conditions x0, Yo = xo. Furthermore the statement of the theorem of

Cauchy, that through every ordinary point (xo,Yo) of the phase plane there

passes one and only one trajectory, is equivalent to saying that if the ini-

tial conditions are prescribed, the subsequent motion is uniquely determined.

On the other hand, to a given trajectory [3.5], i.e., a geometrical

curve in the phase plane, there corresponds an infinity of possible motions

[3.5] corresponding to a different selection of the time origin. In fact, if

Equations [3.4] are satisfied by solutions [3.6] for a given value of to,
they are obviously satisfied by [3.6] for any other value of to . Geometrical-

ly, all solutions [3.6] for the same values of xo, y0 are represented by the

same trajectory, say C, passing through the point (xo, Yo), although there ex-

ists an infinity of possible motions (C) on this trajectory w,.en the arbitrary

constant to is varied.*

It can also be stated that the solutions of [3.4] form a two-

parameter family, while the trajectories [3.5] form a one-parameter family.

4. PHASE TRAJECTORY OF AN UNSTABLE MOTION; SADDLE POINT

The differential equation

mx - ex = 0, (c > 0) [4.1]

has an exponential solution of the form

rt - rt
x = Ae + Be [4.2]

where r = + 7/m. The solution x, thus, tends to infinity for t -> on ac-

count of a positive root r of the characteristic equation. Equation [4.1]

represents, for instance, the motion of an undamped pendulum in the neighbor-

hood of its unstable equilibrium point. Replace [4.1] by the system

x =y, y _ x

In what follows we shall use consistently this notation, i.e., C will designate a geometrical curve,
the trajectory and (C) a motion of the representative point R on the trajectory C.

111114 11,14110 11111111911,
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whence y=i
Al B,

dy C x y: ~x Y=+ _X
dx my [.

For x = 0, y # 0, the tangent to the

trajectory is horizontal; for x * 0,

y = 0, it is vertical. For x = 0,

y = 0, the direction of the tangent is x

indeterminate; this point is a singu- x

lar point.

The phase trajectories are

obtained by integrating [4.3] which
R

gives

2 C 2
M =

where C is the constant of integration. B2  A2

The trajectories are thus hyperbolas, Figure 4.1

shown in Figure 4.1; the asymptotes are

obtained by putting C = 0 which gives

The representative point R arriving from infinity will approach the origin

x = y = 0 and then will depart again into infinity following the direction of

the arrows.

The interpretation of such motion is obtained by considering the

motion of a pendulum in the neighborhood of the point of unstable equilibrium.

Consider the motion of a pendulum having a unit moment of inertia. Let x1 be

the angle measured from the position of stable equilibrium and y, x, the

angular velocity of the pendulum. The law of conservation of energy gives

2l + V(x 1) = h [4.4]

where y2 and V(xz) are the kinetic and the potential energies respectively;

the constant h is the total energy, communicated, for example, by means of an

impulse at the beginning of the motion.

It is known from Theoretical Mechanics (10) that there are three

typical motions according to h - V(r) 0. We proceed to consider each case

separately.

1. h - V(7) > O0. In this case the pendulum goes "over the top" and

continues rotating in the same direction, i.e., y, keeps the same sign but
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varies in magnitude passing through a maximum at xi = 0 and through a minimum

at x1 = r.

2. h - V(7r) < 0. In this case the pendulum reaches a certain angle x0
close to x, = 7 and turns back away from the unstable point x, = r.

3. h - V(r) = 0. It is shown in Theoretical Mechanics (10) that the

pendulum approaches the unstable point xz = 7r in infinite time with a gradu-

ally decreasing velocity yi approaching zero as a limit. We call motion of

this kind asymptotic.

In this discussion the angle x, was measured from the stable equi-

librium position. If we introduce now the angle x = r - x1 , measured from

the point of unstable equilibrium S, the results obtained from the equation

of energy acquire a simple graphical representation shown in Figure 4.1.

The conditions specified in Case 1 are represented by the hyper-

bolic trajectories situated in the upper and lower quadrants of Figure 4.1;

those corresponding to Case 2 are represented by hyperbolic trajectories in

the right and the left quadrants of that figure; and the asymptotic Case 3,

in which the total energy h is just equal to the potential energy of the sys-

tem at the point S of unstable equilibrium, is represented by the asymptotes

AIS and A 2S of Figure 4.1 along which the motion of the representative point

R is asymptotic.

The inverse process, i.e., the motion of a pendulum placed initial-

ly in the unstable position of equilibrium, is also asymptotic; it is repre-

sented in the phase plane by asymptotes SB 1 and SB 2.

The singular point S(0,0) of this type is a saddle point. It is

seen that four asymptotic trajectories approach the saddle point, namely, A 1S

and A 2S for t = + oo, and B S and B2S for t = - o, inasmuch as the asymptotes

are also trajectories. Once again we observe that the point S which is a

singular point, is a point of equilibrium which is, however, unstable in this

case and a point at which the phase velocity vanishes.

5. PHASE TRAJECTORY OF AN OSCILLATORY DAMPED MOTION; FOCAL POINT

The differential equation of a damped oscillator of unit mass is

+ 2bx + 0 = 0 [5.1]

provided b2 - w02 < 0. The solution of-[5.1] is

X = zoe -btCO( t + a) [5.2]



where x0 and a are two constants of integration, b is the decrement,* and

oW = V 02 - b2 is the damped angular frequency. The system is not conserva-

tive in this case. We omit the well-known properties of motion defined by

[5.1] and [5.2] and consider the representation of the motion in the phase

plane.

The differential Equation [5.1] of second order can be replaced by

a system of two differential equations of the first order

dx y - 2by - wox [5.31
dt dt

whence
2

dy 2by + wOx [5 .4 ]

dx y

Equation [5.4] is a particular form of [3.5]. It is seen that the origin,

x = y = 0, is a singular point since the direction of the tangent dy/dx be-

comes indeterminate at this point. Equation [5.4] is a homogeneous differ-

ential equation of the first order and can be integrated by introducing a new

variable u defined by the equation y = ux. We finally get

2 b tan- y + b

y 2bxy + Wo2X Ce [5.5]

The phase velocity = dr/dt i= + jy is obtained by substituting

for x and y their expressions obtained from [5.2]. The absolute value of the

phase velocity is

vli = V 4 x2 + 4bxyw 2 + (1 + 4b 2)y 2  [5.6]

The phase velocity is zero only at the origin, z = y = 0, of the phase plane,

which point coincides with the singular point of the differential equation as

seen from [5.4].
Equation [5.5] can be transformed into polar coordinates. The

left-hand term can be written as (y + bx) 2 + (w 0
2 - b2) 2 - (y + bx) 2 + w2x 2 .

Introducing new coordinates u = wlx, v = y + bx, [5.5] becomes

2 b tan -

S+ U2 = Ce 1 U

If we now introduce polar coordinates defined by u = p cos 0, v = p sin 0,

the last equation becomes

b

p = Cle 1 , C1= V [5 71

* It should be noted that dimensionally, the decrement is b/m, and not 6; here however, m 
= 1.
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y=x where C1 depends on the initial conditions. The

phase trajectory is, thus, a logarithmic spiral in

the (u,v)-plane. In view of the transformation of

coordinates (from x, y to u, v) the spiral given by

x [5.7] undergoes a distortion when referred to the

original coordinates x, y as shown in Figure 5.1.
For a positive damping, b > 0, correspond-

ing to dissipation of energy, the exponent in [5-71

Figure 5.1 must be negative which can be taken care of by a
suitable definition of the positive direction of 0.

For small values of b/wi the curve in the (u,v)-plane approaches the circle
v 2 + u 2 = C which in the (x,y)-plane corresponds to an ellipse given by the

equation y2 + 2bxy + wo2X 2 = C. One may surmise that the point F towards

which the spiral converges is an equilibrium position. We recognize in this
singular point the focal point defined previously. From physical considera-

tions it is apparent that any trajectory of this kind approaches the focal

point for t = + oo; furthermore, the focal point is approached by an infinity

of phase trajectories since through every ordinary point of the plane there
passes a spiral trajectory.

6. PHASE TRAJECTORY OF AN APERIODIC DAMPED MOTION; NODAL POINT

If in 15.1] b' - w 0
2 > 0, the corresponding characteristic equation

has two distinct real roots, - ri and - r2, of the same sign and the motion

is aperiodic of the form x = Ae - rlt + Be - r2t, where A and B are two constants
of integration determined by the initial conditions. Differentiating we have
x = - Arie -lIt - Br 2 e-r2t. Eliminating time t between x and i* we obtain the
equation of the phase trajectory in the form

r r

(xr 1 + y)r = C(xr 2 + y)r2 [6.1]

Taking as new variables v = xr, + y, u = xr 2 + y, we get

v = Cua [6.2]

where a = r2/r1 > 1, r2 being the absolute value of the larger root. Equa-

tion [6.2] represents parabolic curves tangent to the u-axis at the origin;

for dv/du = Cau a - 1 is zero when u = 0 since a - 1 > 0 and v = u = 0 is a
point on the curve.

This elimination is best obtained by solving the system of linear equations with e-r t and e-r2t as
unknown. By taking logarithms of the solutions thus obtained, the time t is easily eliminated.



For C = 0, the curve degenerates into the u-axis, i.e., v = 0; for

C ->oo it degenerates into the v-axis, i.e., u = 0. Furthermore, the curves

[6.2] are convex towards the u-axis since v"/v = a(a - 1)/u 2 > 0. These

curves are shown in Figure 6.1a. If we transform the (u,v)-plane back to

the (x,y)-plane, the phase trajectories have the configuration shown in

Figure 6.lb.

The u-axis, v = 0, is represented in the (x,y)-plane by the line

y = - xrl; the v-axis, u = 0, is represented by y = - xr2. The trajectories

are tangent to the u-axis at the origin in the (u,v)-plane; hence, they will

be tangent to the line y = - xrl at the origin in the (x,y)-plane as shown

in Figure 6.lb. Furthermore, as u increases, the curves in the (u,v)-plane

become parallel to the v-axis, hence the asymptotic branches of phase tra-

jectories approach parallelism with the line y = - xr2 in the (x,y)-plane.

It is seen that the trajectories cross the x-axis, i.e., the line y = 0, at

right angles. We also find that the locus of the points in which the trajec-

tories x, y have horizontal tangents lie on the line y = - rzr 2 x

y=x

U

V V

U X

(a)

(b)

Figure 6.1

These conditions determine the trajectories shown in Figure 6.b.

The origin N, Figure 6.1a is a singular point, a nodal point. It is seen

that an infinity of trajectories, or integral curves, approaches a nodal

point.
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7. METHOD OF ISOCLINES

Let

dx = P(x,y); = Q(xy)
dt dt

be the differential equations of a dynamical system and

dy _ Q(z,y) _= Q (XY) F(x,y)
dz P(x,y)

that of the trajectories. Suppose that

dy Q(z,y)y = ) F(x,y) = a = constant [7.1]
dz P(x,y)

This equation clearly defines a curve in the (x,y)-plane along which the

slope, dy/dx, of the trajectories remains constant. Such curves are called

isoclines. It is apparent that all points of isoclines are necessarily or-

dinary points since at singular points the slope of trajectories is indeter-

minate, so that [7.1] has no meaning at such points.

The method of isoclines makes it possible to explore the field of

trajectories graphically without solving the differential equation. Once the

curve F(x,y) = a is traced, one draws along its length small lineal elements

having the prescribed slope dy/dx = a. One repeats the procedure for other

values of a so that finally one obtains a series of curves F(x,y) = a, al,

a2, .. -, with the corresponding slopes drawn along these curves. These

slopes then determine the field of directions of tangents to the trajectories

in a certain region of the (x,y)-plane.

Starting from a point (xo, yo) a continuous curve can be traced fol-

lowing always the direction of lineal elements of the field. The curve so

obtained is clearly the trajectory passing through the point (xo, o). The

method is very valuable in cases where the explicit form of the solution of

the differential equation is not known. It has been applied, for instance,

by Van der Pol in his early studies of the equation

S- p(1 - x 2 ) + x = 0 [7.2]

This equation can be reduced to the system

i= y; y = P(1 -- x2 )y - X

whose trajectories are given by

dy _ (1 - z2)y - z[7
dx y

, j " , ,91 IN i WII Ili W " I



The only singularity of [7.2] is clearly the ori-

gin, x = y = 0; hence the method is applicable

everywhere except at that point. Equation [7.1] c

of the isoclines in this case is

( -a) -- PX 2  [7.4

For a fixed p and for a number of different val-

ues of the slope a, a series of curves [7.4] are

obtained along which the slope of the trajectories

is constant.

Figure 7.1 shows this construction of Figure 7.1

Van der Pol (1) for p = 1 in [7.2] which is self-

explanatory. This graphical construction makes it possible to establish the

existence of a closed trajectory C to which the non-stationary spiral trajec-

tories C' and C" approach both from the outside and from the inside of C.

The reader can easily check, by this method, the principal types of

trajectories established previously.

The principal advantage of the method of isoclines lies in the fact

that it always leads to the desired result although its application is tedious

and subject to errors inherent in any graphical construction, particularly

when the slope of trajectories changes rapidly in certain regions of the

phase plane as shown in Figure 7.2. This figure,also taken from Van der Pol's

paper, represents the trajectories of [7.2] for p = 10.0.

8. SYSTEMS WITH NEGATIVE DAMPING; FROUDE'S PENDULUM

c In many branches of applied science one is con-

1eio fronted with problems in which negative damping occurs. From

a physical standpoint the term is rather unfortunate; its jus-

tification lies in the sign of the damping coefficient b. In

cases previously considered it was assumed that b > 0 corre-

x sponds to a dissipation of energy from the system. For b < 0,

on the contrary, there is an addition of energy to the system

from an external source according to the same law, that is, in

proportion to velocity.

In electrical problems negative damping plays an im-

portant role; it is generally associated with circuits contain-

ing non-ohmic conductors, which exhibit a decrease in voltage

for an increase of current. In many control problems a simi-

Figure 7.2 lar result is observed if the phase of a normally damping
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control action is reversed (11). Many years before the discovery of electri-

cal circuits possessing negative resistance, or negative damping features,

W. Froude (12) (13) discovered a similar effect in the case of a pendulum

mounted on a rotating shaft with a certain amount of friction. It was ob-

served that a pendulum of this kind begins to oscillate with gradually in-

creasing amplitudes. The following theory explains this effect: In addition

to its own parameters I, b, mgl = C governing the free motion as determined

by the equation Iq + be + Co = 0, the pendulum is also acted upon by an ex-

ternal moment M(a - q), due to dry friction, which depends on the difference

of angular velocities w of the shaft and of the pendulum. Expanding the

function M(w - $) in a Taylor series and keeping only the first two terms we

have the following differential equation

I + be + C = M(w) - M'(w)

that is,

I + b + M'() + ct = M([) [8.1]

The constant term M(w) on the right merely displaces the position of equilib-

rium and is of no further interest. Thus, interest centers on the coeffi-

cient, [b + M'(w)], of . If, in a certain range of w, the friction is such

that M'(w) < 0, i.e., the friction decreases with w, the negative term M'(w)

may outweigh the positive one, b. Thus, the motion of the pendulum occurs as

if the coefficient of were negative.

From a formal standpoint the introduction of negative damping does

not alter the discussion in Sections 5 and 6 appreciably; the only difference

in the representation of motion in the phase plane consists in the reversal

of the positive direction of the phase trajectories shown in Figures 5.1 and

6.1. Instead of approaching a stable focal or nodal point, the trajectories

"approach" these points for t = -oo, that is actually depart from them.

9. REMARKS CONCERNING LINEAR SYSTEMS

The above examples are intended primarily to familiarize the reader

with the representation of motion by phase trajectories; nothing new has been

learned so far, but the known facts were merely presented in a different way.

The connection between the singular points and the state of equilibrium of a

system will play an important role in what follows and it is useful to mention

at this stage that a linear approximation will have considerable importance

in establishing the criteria of stability as will be shown in Chapter III.

The topology of phase trajectories in the neighborhood of point singularities

in non-linear problems remains qualitatively the same as in the simple linear
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problems studied so far, although quantitatively the relations may be some-

what different. Thus, in non-linear conservative systems the trajectories

around a vortex point are still closed curves but not necessarily ellipses.

Likewise the unstable equilibrium in non-linear systems is still character-

ized by a saddle point but the asymptotes of the latter are not straight

lines as they are in linear cases. We shall investigate these questions in

detail in the following chapter but it is worth-while mentioning now that in-

sofar as their local properties are concerned, non-linear systems behave not

very differently from the linear ones. The important difference lies in the

behavior in the large.

It will be shown later that non-linear systems possess under cer-

tain conditions closed trajectories of a special type, the limit cycles.

These new closed trajectories are entirely different from those of linear

systems. The most important feature of this new type of trajectory is that

it can occur only in a non-conservative system whereas a linear system can

possess closed trajectories only when it is conservative. This can be stated

as follows: In both linear and non-linear mechanics a similar formulation of

conditions for stability is used but the corresponding stationary states of

motion are quite different.

A typical pattern of stationary motion in linear mechanics is the

motion of a non-dissipative harmonic oscillator, whereas a corresponding pat-

tern in a non-linear, non-conservative system is that represented by this

special closed trajectory of a new type, the limit cycle, as defined in Chap-

ter IV.

The theory of limit cycles and associated phenomena is, thus, a do-

main of non-linear mechanics proper for which there exists no counterpart in

linear mechanics.

1111111 illl 111111 1, 1101411 Il



CHAPTER II

PHASE TRAJECTORIES OF NON-LINEAR CONSERVATIVE SYSTEMS

We shall now consider non-linear systems of conservative type, that

is, systems in which the dissipation of energy is negligible. The law of

conservation of energy is applicable here and leads to a relatively simple

topological representation without the necessity for solving the non-linear

differential equation. The question of stability of motion in the vicinity

of equilibrium points, left open so far, will also be clarified following

this line of argument.

10. GENERAL PROPERTIES OF NON-LINEAR CONSERVATIVE SYSTEMS

Consider first a simple motion defined by the differential equation

i = f(x) [10.1]

in which the restoring force is a certain function of the distance x. It

will be assumed that f(x) is analytic for the whole interval (- 0o, + 0o).

Equation [10.1] of the second order is equivalent to the system

x = y; y = f(x) [10.2]

Eliminating time we have

dy f(z)
dz y

which specifies the field of trajectories in the phase plane. The velocity

of motion is given by the ordinate y of the trajectory, and the phase veloc-

ity is

ds 2 + 2 y = y [10.4]
dt

From [10.3] it follows that the trajectories cross the x-axis

(y = 0) at right angles and have horizontal tangents at points xi which are

roots of f(x), provided the trajectory does not cross the axis of abscissas

(y = 0) at these points. We see thus that Cauchy's theorem of uniqueness

holds in all cases except at points (xi,0) for which f(xi) = 0.

Furthermore, from the fact that at a singular point y = 0, f(x) = 0,

and, in view of relations [10.2], it follows that at singular points dx/dt =

0 and y = d2x/dt2 = 0. The latter condition is equivalent to the vanishing

of the forces at this point. The last two conditions clearly define a posi-

tion of equilibrium. Moreover, from [10.4] it follows that at the singular

points the phase velocity vanishes.



.- i n . mmi wmmmII0II11 liii YiYii

25

11. TOPOLOGY OF PHASE TRAJECTORIES IN THE NEIGHBORHOOD
OF SINGULAR POINTS

A. GRAPHICAL METHOD

For conservative systems the problem is simplified owing to the ex-

istence of the integral of energy. For a system of unit mass we have

1y2 + V(x) = h [11.1]
2

which expresses that the sum of the kinetic energy,1 y2 and the potential en-

ergy, V(s), remains constant. By definition V(x) = - f f(x)dx, where f(x) is
the restoring force. 0

For a given value of h, [11.1] represents a curve of constant ener-

gy in the phase plane. The motion is impossible if h - V(x) < 0 since the

value of y is then imaginary. This is ruled out in a physical problem. Equi-

librium points are characterized by the relation f(x) = 0, that is V'(x) = 0.

In other words, the potential energy has an extremum value at the point of

equilibrium. From [11.1] and the preceding discussion the following conclu-

sions can be formulated:

1. The phase trajectories are symmetrical with respect to the x-axis.

2. The trajectories cross the x-axis at right angles, that is dy/dx =

oo; they have a horizontal, tangent at the points where f(x) = 0, provided y

does not vanish at these points.

3. The singular points are z =v(x)

situated on the x-axis at points x,

for which f(x) = 0. -

The topological picture of
h - V(x)

the phase trajectories can be best i
1 z z :h 2

shown in two steps: I . z h,

a. by drawing an auxiliary II II
II II

diagram giving the representa- o I x (a)
tion of the difference h - V(x),

and

b. by drawing the phase

trajectory y/rV itself, both +h-V(x) /M1

curves being plotted against x. Xo

5 'M
Figures 11.la and b show - iI

examples of this representation. Fig- II(b)

ure 11.la shows the diagram of the

balance of energy h - V(x) for a Figure 11.1
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given shape of V(x) and assumed value h = hl. The difference h - V(x) is

positive to the left of M I. Figure 11.1b gives the phase diagram (coordi-

nates x, y/V2) corresponding to Figure 11.1a. The phase trajectories are

real to the left of M i. This case corresponds, for instance, to the trajec-

tories in the right (or left) quadrants of Figure 4.1 representing the motion

in the vicinity of a saddle point when the pendulum does not have enough en-

ergy to overcome the "potential barrier" and is thus unable to go over the

upper unstable equilibrium point. In this case, the question of linearity

assumed in connection with Figure 4.1 is waived and the discussion, there-

fore, can be made general. If the value of h is increased (h = h2 ), the

point M, is shifted to M2, and the phase trajectory is shifted accordingly

(point M2).

Figure 11.2 represents an analogous construction when V(x) has a

minimum for x = x1. The only essential difference between this and the pre-

ceding case is in that for x = x1 ; V(x1 )

zI has now an extremum, that is, f(x) = 0.

z=v(x) Hence the point x = x, is a singular point,

the vortex point, as previously defined.

The trajectories in the phase space, Figure

11.2b, around the vortex point are obtained

- in the same manner as before, that is, for

o0 .I(a) a given value of h V(x) we plot the or-

I dinates ±+ h - V(x) in Figure 11.2a; then

I I for the next curve we change h and plot

h=h, another curve, etc. The oval curves which

thus appear are enclosed within each other

0 | x and the motion is periodic; moreover, in
view of non-linearity, these curves depart

=ho (b) somewhat from the elliptic form.

Figure 11.2
B. ANALYTICAL METHOD

The topological picture of the

trajectories in the vicinity of singular points can also be obtained analyt-

ically. Assume first that V(x) has a minimum for x = x1, and expand f(x) in

a Taylor series about x = x1

f(x) = a(x - zx1 ) + , (x - z,) 2 + a (x - ) 3 + [11.2]
1-2 1"2.3

Since V(x) = - j f(x)dx, by integrating [11.2], changing sign, and adding the

constant of integration ho, we get
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V() =h - a (X - Xl)2 + 12 3 )3

where

al = f'(,) = - V"(x,); a2 = f1(z1) = - V "'(z) [11.4]

Transferring the origin to the singular point, i.e., putting z = x, + 4, y =

0 + n, this gives, upon the substitution of the value of V(xz + 4) as given

by [11.3] into the integral of energy y2/2 + V(x) = h, the equation

2 2 k +1

2 o 1-2 1-2 . .*(k + 1)

Two principal cases can be considered:

1. a +# 0. In this case the curve V(x) and straight line z = ho have

at x = x, contact of the first order. Since V(xl) is minimum, V'(x,) = 0 and

V"(xl) > 0. Therefore a, = - V"(x1 ) < 0. For h = ho [11.5] degenerates into

an isolated point 4 = n = 0, which is clearly the vortex point of the phase

trajectories. For h - ho = a > 0, [11.5], to the first order of f(z), is

2 + la1142  a [11.6]
2 2

which is of the form

772 + 2

m n

where m 2 = 2a; n2 = 2a/lal . The trajectory in the phase plane is thus an

ellipse with semi-axes m, n. To the first approximation, for small motions,

it is legitimate therefore to consider the motion as a sinusoidal function of

time.

2. a, = 0. For a greater generality assume a2 = a .. a 1 = 0 and

ak * 0. Then k is necessarily an odd integer and ak < 0, since z = V(x) lies

above its tangent in the neighborhood x = x1. For h = ho the curve [11.5]

reduces again to an isolated point 4 = T = 0, the vortex point of trajectories.

For h - ho = a > 0, [11.6] to the (k + 1) order of k becomes

72 + ak k+1

2 (k + 1)!

which represents a closed curve differing from an ellipse even for very small

oscillations. It would be erroneous, therefore, to "linearize" such a motion

even for small oscillations. The topological picture of the trajectories in
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the phase plane will have the appearance of closed curves surrounding each

other around the vortex point V, Figure 11.2b, as previously found by the

graphical method.

If the potential energy V(x) has a maximum for x = zx the procedure

is similar, with the exception that a, (or ak in the more general case when

a, = a2 = ak_- = 0) is now positive, so that the trajectory becomes

72/2 - a i 2/2 = a to the first order (case when a, * 0), which is of the

form

772 42
2  2m n

[11.7)

with the previous notations. Equation [11.7] represents hyperbolas with

7 = + VIa/T and n = - Va, as asymptotes. The point 4 = n = 0 is, clearly a

saddle point. Thus to the first order, the small motions in the vicinity of

the maximum of potential energy are unstable and are represented in the phase

plane by hyperbolic trajectories as previously found from a study of linear

systems. In the second case (a, = a2 =* ** = ak -1 = 0; ak * 0),we find by

a similar argument that for ak > 0 the trajectories in the phase plane are

obtained from [11.5] by neglecting the terms with akl, ak+ 2 , ; in this

case

772  ak
k + 1

2 (k + 1)!

z = V(x)

I/ I

xI x, ;'

Figure 11.3

The phase trajectories, while still possessing

the same general features, such as asymptotic

motions, etc., depart from ordinary hyperbolas

even for small motions. Furthermore the asymp-

totes are curvilinear.

3. The potential energy V(x) has an in-

(a) flexion point at x = xz with a horizontal tan-

gent, Figure 11.3a. In this case al =- V"(x) =

0. Furthermore, in the general case, the first

term ak, which is not zero, must be necessarily

of even order (k = 2, 4, -.. ) as follows from

[11.3] because the potential energy variation

x .changes its sign for h = h, ± Ah in this case.

In the phase plane, Figure 11.3b, the trajec-

tory corresponding to the ordinate h = h, of

(b) the inflexion point has a singular point VS in

the sense of differential geometry, e.g., a

[11.8]

hII"
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cusp, which represents the coalescence of a vortex point V with a saddle

point S. The motion along this singular trajectory is asymptotically ap-

proaching the point VS, and reverses the direction of its motion also in an

asymptotic manner. The motion is ultimately unstable; this instability is

more definite for other trajectories. Everything happens as if the coales-

cence of a stable vortex point with an unstable saddle point were contaminat-

ing the process with an ultimate instability. In reality this process of co-

alescence of singularities means that the singularity at this point is no

longer simple in character. The complete study of the conditions of equilib-

rium upon the coalescence of singularities is too complicated, and will not

be attempted here.

Summing up the results of this analysis we are led to the follow-

ing two theorems of which the first is due to Lagrange and the second to

Liapounoff.

THEOREM 1. If the potential energy V(x) is minimum at the point x = xz, the equilibrium

is stable.

THEOREM 2. If the potential energy V(x) has an extremum at the point x1, without being

a minimum, the equilibrium is unstable.

12. TOPOLOGY OF TRAJECTORIES IN THE PHASE PLANE. SEPARATRIX

The preceding method was applied to the motion occurring in the

vicinity of the equilibrium points; it can be extended, however, to the whole

phase plane. In this manner we obtain the complete picture, the topology of

the phase trajectories with the critical boundaries separating motions of dif-

ferent types. The starting point for this representation is again the energy

equation y 2/2 = - V(x) + h. The various cases to be discussed are illustrated

in Figure 12.1.

1. If h < V(x) for all values of x, clearly no motion is possible.

Figure 12.1 exhibits this condition between the points 0 and 1, between point

5 and 7 and to the right of point 13.

2. h > V(x) for all values of x. This case is shown in Figure 12.2.

The velocity y never changes sign but varies only in magnitude. At the point

xz at which V(x) is maximum, the velocity decreases somewhat. This corres-

ponds to the motion of a pendulum having an initial energy h greater than the

amount required to carry it to the upper unstable equilibrium point.

3. Vmax (x) > h > Vmin (x), assuming that no point of tangency exists

between the straight line z = h and the curve V(x) as is shown in Figure

12.1a for z = h2. Between the points a and b, h - V(x) > 0; the motion is
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Figure 12.2
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(b)

Figure 12.1

thus possible. Point 2 in the interval

(a,b) corresponds to the minimum of po-

tential energy, hence, it is a vortex

point 2 in the phase diagram. The tra-

jectories surrounding the point 2 are

(o) closed curves without points of intersec-

tion; by changing h 2 we obtain a family

of these trajectories around the point 2

forming an "island" in the phase plane.

Similarly, between the points c and d

(same value h 2 ) there appears another

(b) "island" of trajectories around the other

vortex point 4.

4. If in a certain region, e.g.,

to the left of point 0, in Figure 12.1a, the potential energy decreases mo-

notonically, the motion becomes possible again. The trajectory arrives from

x = - o, reaches the point 0 and then turns back. Within a limited range,

e.g., between 0, 0' the motion resembles that of a pendulum projected ini-

tially with an energy insufficient to carry it over the upper position of

unstable equilibrium.

5. h = V(xz) at a certain x = xz. The line z = h is tangent to the

curve of energy V(x) at the point 3 of its maximum. Between the points 2 and

3, the motion approaching point 3 becomes asymptotic and point 3 is a saddle

point. We note that as the energy constant h2 approaches the value ha, the
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"island" of trajectories, around the vortex point 2, gradually increases in

size, the motion remaining periodic. When the value z = h3 is reached the

motion loses its periodic character because the time of approach to the sad-

dle point is infinite. We infer, therefore, that this singular trajectory on

which the motion is asymptotic, the separatrix, limiting the size of the

"islands," is limited by the singular trajectories issuing from the saddle

point 3. The same conclusion is also valid for the separatrices issuing from

the other two asymptotes of the saddle point 3 and enclosing the vortex point

4 corresponding to another position of stable equilibrium.

If the value of the energy constant h3 is increased slightly, the

saddle point disappears and the phase trajectory encircles the saddle point 3

and the vortex points 2 and 4 as shown by the dotted lines. If, however, the

energy constant is decreased slightly, there appear two closed trajectories

around the vortex points 2 and 4. We thus find two kinds of trajectories,

typified by those in the upper and lower quadrants, Figure 4.1, on the one

hand, and those in the left and right quadrants, on the other hand. Further-

more, we are now able to correlate radical changes occurring in the topology

of phase trajectories with a critical value of a certain quantity h3.

When the line z = h3 is tangent to the energy curve at two consec-

utive maximum points, e.g., points 9 and 11 in Figure 12.1a, the separatrix

has the appearance of a chain enclosing three vortex points 8, 10, and 12,

and issuing from the asymptotes of two saddle points 9 and 11. For h =

h3 + Ah (Ah > 0) the phase trajectory has the appearance shown in dotted

lines, since the saddle points disappear in this case. For h = h3 - Ah three

"islands" of periodic trajectories will appear around each of the three vor-

tex points 8, 10, and 12.

We thus meet a situation which will be of great importance in what

follows. We shall frequently use the expression "the topological structure

of the phase trajectories undergoes a qualitative change" for a critical val-

ue of a certain parameter whenever we encounter two entirely different as-

pects of the trajectories on both sides of this critical value. The value

h3 of the constant of energy h in the above examples illustrates this situa-

tion. In these examples the critical or "bifurcation" points at which these

changes occur are associated with certain values of the constant of energy

appearing in the first integral of a dynamical system. In the following sec-

tion we shall consider a still more important case when a certain parameter

appears in the differential equation itself.

From the elementary considerations developed in this section the

following theorem is apparent. Inside a closed phase curve there is always an odd

number of singular points, the number of vortex points being greater than the number of

saddle points by one unit (2).
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Before closing this qualitative study of the topology of trajec-
tories in the phase plane it may be useful to mention the analogy existing

between the separatrix and the divide of common topography.* In both cases
a small change in the parameter, e.g., small displacement of the source

across a theoretical divide, results in an entirely different topographic

picture of the ultimate process.

13. BEHAVIOR OF A CONSERVATIVE SYSTEM AS A FUNCTION OF
A PARAMETER. CRITICAL VALUES OF A PARAMETER

We propose now to review briefly the theory of Poincar6 (14) (15)
regarding the dependence of the topological structure of trajectories in the
phase plane on a parameter in the differential equation. The qualitative

analysis of the trajectories contained in the preceding section has already

prepared the ground for a more rigorous quantitative analysis of this

question.

Consider a dynamical system described by a differential equation

depending on a parameter X. If the parameter X is varied, the solutions of

the differential equation represented by the trajectories undergo variations.

By definition we shall designate as ordinary values of X those values which

correspond to trajectories belonging to the same family, as, for instance,

was the case of closed trajectories belonging to the same "island" considered

in the previous section. Therefore, in an interval of ordinary values of X a

continuous variation of X corresponds to a continuous variation of the tra-

jectories in the phase plane without any radical changes in their topological

features. The values Ai of the parameter X, at which the topological struc-

ture of the trajectories changes abruptly are called critical values.**

In dynamical problems it is convenient to introduce a parameter X

in the expression of potential energy V(x,X) and, hence, of the force

f(x,X) (xx) [13.1]

As shown in Section 11, the points of equilibrium are given by the extremal

values of the potential energy, that is, by equating the expression [13.1] to
zero. This equation represents a curve M, in the (x,X)-plane, Figure 13.1,
which, in general, may have points of self-intersection such as F. For a

given value X0 of the parameter the positions of equilibrium x1 , x2, x3 are

The introduction of the separatrix and of a parameter in the study of the topology of the phase
trajectories is due to Poincar6.

The term "bifurcation value" is also used.
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obtained as points A, B, C of intersec- x

tion of M with the straight line X = 0. M

If the value of X is changed the posi- x o
o

tions of equilibrium change. It was x2

shown in Section 11 that the stability x c

of equilibrium depends on the sign of x

the derivative f (x,X) = - V,,(x,).* --- o  X>

For a minimum of potential energy

(Vx > 0; fx < 0), the equilibrium is Figure 13.1

stable; hence the point of equilibrium

is a vortex point. Furthermore for f, > 0 the equilibrium is unstable. Thus

points of equilibrium are given by the equation

f(x,A) = 0

and the criteria of stability by

f(x,X) > 0 [13.2]

Differentiating the equation f(x,A) = 0 with respect to A we get

dz _ fX(x, X) [13.3]
dX fX(x,A)

If by increasing A we get a value A1 , at which two points A and B coalesce,

the two positions of equilibrium xi and x2 coalesce into the equilibrium

point x0, Point D on Curve M. For A > A there remains only one point of

equilibrium x, Point E on Curve M. When A = A1, [13.1] has a simple root

x3 and a double root x0, hence fx(xo,A) = 0. From [13.3] it follows that

dx/dX = oo, i.e., the tangent at D is vertical.

The value of A = A1 at which both equilibrium points x, and x2
coalesce and then disappear, is the critical value of the parameter. For

the point F at which the curve intersects itself, the expression dx/dA is

indeterminate. This implies that both f, and fx vanish. Poincar6 gives a

simple rule for ascertaining the stability of motion in the vicinity of a

critical value of the parameter.

POINCARE'S THEOREM (14) (15)
If the region in which f(x,A) > 0 is below the curve f(x,A) = 0 for

the positive values for x and A shown in Figure 13.1 the equilibrium is stable,

* In the following the symbol fx designates the partial derivative of f with respect to x.
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i.e., a vortex point; if it is above the curve the equilibrium is unstable,

hence, a saddle point.

In fact, assume that the shaded area in Figure 13.1 represents the

region in which f(x,X) > 0 and consider a point in the region below the curve

and proceed in the direction of increasing x, with X fixed. In such a case

f(x,X) decreases and hence f,(x,X) < 0, that is, V,,(x,X) > 0, which indi-

cates the existence of a minimum of potential energy and, hence, stability.

The opposite condition occurs when the region of f(x,X) > 0 is above the

curve, i.e., instability. The theorem indicates that the branches FAD and

GCE correspond to stability, while the branches GF and FBD correspond to

instability.

It is seen thus that the "exchange of stabilities" ("6change des

stabiliti6s," according to the expression of Poincar6) occurs at the critical

values of the parameter. The points of equilibrium in conservative systems always aRpear

and disappear in pairs; the disappearance of equilibrium points in conservative

systems always results in the coalescence of a vortex point with a saddle

point. As has already been mentioned, after such coalescence no stable equi-

librium exists.

A few simple examples illustrating the topological method outlined

in this and in the preceding sections are given in the following sections.

14. MOTION OF AN ELASTICALLY CONSTRAINED CURRENT-CARRYING CONDUCTOR

Consider an elastically constrained* conductor of length I and

carrying a current i, attracted by a rigidly constrained conductor of infi-

nite length carrying a current I; let a be the distance between the wall W

constraining i and the fixed current I, x being the variable distance between

Wand i. It is assumed that the electrodynamic action exerted on i is lim-

ited to the length, i.e., the current i is conveyed through flexible wires pp

at right angles to i so that the electrodynamic forces act along the length I

only. Furthermore, since the conductors have a finite diameter, x < a,the

total force acting on the conductor i is

f(z,X) = - k(x -a [14.1]

where X = 21il/k is a parameter; the first term kx is the force due to the

elastic constraint, and the second kX/(a - x) is the electrodynamic force

according to the Biot-Savart law.

* As, for example, by the springs ss, Figure 14.1a.
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For X = a 2/4 one has a critical value of the parameter because both

f(x,X) and fx(x,X) vanish. The differential equation of motion in this case

is

mi + k -- 0 [14.2]

It is equivalent to the system

k x2 - ax + X [14.5]
=y;y- m a--x

From [14.3] it follows that

dy _ k x2 - ax + X
dx m y(a -x)

Equation [14.4] establishes the topology of the phase trajectories.

There are two singular points, both located on the x-axis (y = 0), given by

the roots x i and x2 of the equation x
2 - ax + X = 0. The coordinates of

these points are (x1,0) and (x2,0) with x = - b and x2 = - + b, where b =

- X. The motion has a different character according as X <a2/4. The

equality X = a2/4 corresponds to the critical value of the parameter.

1. X < a2/4. Both roots x, and x2 are real and positive. Substituting

the values of x, and x2 into the expression of fx(x,k) = - Vx (x,X), we have

for x = - b, fx(xl,,) < 0, Vxx(xl,A) > 0, and hence the potential energy

is minimum; the equilibrium is, therefore, stable and the singular point is

a vortex point.

Similarly, for x 2 = 9-+ b, fz(x 2 ,A) > 0, V,,(x 2 ,A) < 0, and there-

fore the equilibrium is unstable; hence, this singular point is a saddle

point S.

From [14.4] it follows that as x approaches a, the slope dy/dx of

the phase trajectories approaches infinity; hence the trajectories have the

vertical line x = a as asymptote.

In order to complete the topological picture we have to determine

the separatrix. In this case the integral of energy exists. We obtain its

value by integrating the dynamical equation

mx - f(x,X) = 0 [14.5]

Multiplying this equation by x = y and integrating, we have

1 2 1 2
my + -kx2 + kh log(a - x) = h [14.6]

The equation of the separatrix is obtained if h is such that the

separatrix passes through the saddle point y = 0, x 2 = + b. Substituting

Imhh. , iim u10 A



these coordinates into [14.6], the constant of energy becomes

h k + b) + k log( - b) [14.7]

Hence, the equation of the separatrix is

1 my 2 + 2 + + k log a - -- =0 [14.8]
2 2L a b

2

Figure 14.1b gives the topological picture of the trajectories. It

is seen that, if the initial conditions are such that the representative point

a/2 a/2

Pr

S I

IV 

S

(b)

Figure 14.1

for t tof is within the area limited by the separatrix D, the motion is
periodic around the vortex point V. On the separatrix itself the motion is

asymptotic. Outside the separatrix the motion is aperiodic; the phase tra-

jectories exhibit a "dip" above the saddle point and approach the line x = a

asymptotically.

2. X > a2/4. In this case there are no singular points, and hence no

positions of equilibrium, since the equation x2 - ax + X = 0 has no real

roots. The electrodynamic force exceeds the elastic force for all points of

the phase plane. The phase trajectories are shown qualitatively on the right

side of Figure 14.1b between the separatrix and the line x = a.

3. k = a2/4. As X approaches this value, b =-- X approaches zero;

both singular points, assuming that the approach takes place from the region

where X < a2/4, approach each other and coalesce for X = a2/4. The separatrix
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still exists but exhibits a cusp at the point VS of y=i

coalescence, Figure 14.2. The motion remains un-

stable. This case is similar to that considered in --a

Section 11, Case 3, when the potential energy has an

extremum value without being either maximum or minimum.

15. RELATIVE MOTION OF A ROTATING PENDULUM

This problem may be considered as the gen-

eralized study of a centrifugal governor in the ab-

sence of friction. Let S2 be the angular velocity of (VS)

the plane of the pendulum of length a; m the mass of

the pendulum, and 0 the coordinate angle determining

its position on the circle of its relative oscilla-

tion, Figure 15.1.

The centrifugal force acting on the particle

is mS2 a sin 0, and its moment about the axis of the

pendulum is m2 a 2 sin 0 cos 0. The moment due to gravity is mga sin 0. The

resultant total moment is

M(O, ) = m92 2 (cos - X) sine [15.1]

where X = g/2 2 a is a parameter. The signs occurring in [15.1] are apparent

from Figure 15.1. For greater generality we may consider negative values of

X; they correspond to a purely theoretical case

when g < 0.

The differential equation of relative mo-

tion is

18 - mp 2a 2 (cosO - X) sin 0 = 0 [15.2]

ma2gsine where I = ma 2 is the moment of inertia of the pen-

SMgdulum. The equivalent system is

m = w; I' - m2a2 (cos - A) sin0 = 0 [15.3]
Figure 15.1

whence

dw _ m9 2a2 (COS 8 - X)sin [15.4)
dO Iw

Equation [15.4] gives the phase trajectories in the (0,w)-plane. The singu-

lar points are

[15.5]
W1 = 0, = 0; W 2 = 0, 2 =7; ( 3 , 03 =COS COS-1
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S The third singular point exists only if

-1 _j =+ I X = g/2 a < 1, that is, for a sufficient-

ly large value of 9. The force is given

I f(,) < 0 by equation
n/2

f(,x)>O f(e,A) = m S2 a 2 (cos -) )sin8 [15.6]

1The points of equilibrium are given by

fe,k)<o 0 f(O,X) = 0; that is, 9 = 0, 9 = n, 9 =

I f o (,- 7r, and cos 8 = X. Figure 15.2 repre-

x 7sents the (,AX)-diagram for these values.

The region in which f(,X) > 0 is shaded;

Figure 15.2 the non-shaded regions correspond to

f(O,X) < 0. The branches of the curves

9 = cos- A, 9 = 0, 0 = r, 9 = - r, situated above the regions for which

f(O,A) > 0, represent the loci of saddle points shown by circles.* The points

(9 = 0, A = I), (9 = 7r, X = - 1), (9 = - 7r, X = - 1) are the critical points

at which there occurs the "exchange of stabilities" of Poincare. As regards

the curve cos 0 = A, it represents loci of vortex points; this region exists

only between the limits X = t 1.

The integral of energy exists in this case, because the system is

conservative by our assumption. Its expression is

- m2 a 2 + Xcos 0 = h [15.71
2 2

Equation [15.7] expresses the law of conservation of energy. The equation of

the separatrix is obtained from the condition that the phase trajectory passes

through the saddle point. This condition is satisfied by the points 9 = - n,

= 0 which gives the equation of the separatrix, Curve A, Figure 15.3,

2 mI sin2e + 2A(cos0 + 1)] [15.8]

There exists a second separatrix (B, Figure 15.3) passing through the second

saddle point 0 = 0, 0 = 0, for which h = - mXQ 2a2; its equation is

S= m 2  sin20 + 2X(cosO - 1) [15.9]

Figure 15.3 shows the topology of the phase trajectories for

0 < A < 1. It is observed that the vortex point 0 = 0 for Q = 0 becomes a

* The following convention will be used: black points designate the stable singularities and the

circles the unstable singularities.



saddle point for 9 * 0; at the same w=8

time there appear two vortex points

V 1 and V 2 symmetrically situated with/ B

respect to the point 0 = 6 = 0 around -T /l \/ +

which periodic motions are possible.

The oscillations about these vortex

points are asymmetrical with respect ~

to the point 9 = 6 = 0; the coordi-

nates of the vortex points are = \

cos 1, w = 0. As soon as the con- \

stant of energy reaches the critical

value and the separatrix B is crossed Figure 15.3

the motion becomes again periodic and

symmetrical with respect to 0 = 0 = 0, but not uniform; the velocity w =

decreases for 0 = 0. This range corresponds to the region of the phase plane

situated between the separatrices A and B. When the energy constant reaches

a second critical value at which

.=e the separatrix A is crossed, the

-/2 + 7r/2 motion becomes rotary, shown by

o-- the broken line in Figure 15.3,

S/ and non-uniform; the phase trajec-

tories pass outside the separatrix

A.

- -" To sum up, in the case

0 < X < 1 three kinds of motions

Figure 15.4 are possible:

a., b. Two periodic

oscillatory motions, one around each vortex point (V1,V2) and one

around the combination of one saddle point S and two adjoining vor-

tex points V1, V 2 .

c. One periodic motion around the external separatrix A, see

Chapter VII.

For X = 0, i.e., 9 -oo, both separatrices A and B coalesce, and the

vortex points move to 0 = t 7/2 positions. The topological picture of the

trajectories is shown in Figure 15.4. For 1XI > 1 the topological picture

also changes; there appear vortex points 0 = 0, 7, - n, but the intermediate

range disappears entirely. The values X = - 1, = 0, X = + 1 are thus the

critical values of the parameter X.



CHAPTER III

QUESTIONS OF STABILITY

16. INTRODUCTORY REMARKS

In the preceding chapter the question of the equilibrium of conser-
vative systems was investigated, and certain definitions were formulated. The
general problem of stability was studied by Liapounoff (4). In this chapter
we shall give a brief outline of this study insofar as it is related to the
problem of the stability of equilibrium, postponing the question of station-
ary motion to a later chapter. The study made so far is still incomplete
since it concerns only periodic trajectories of a very special type, namely,
those occurring in conservative systems. In Chapter IV we shall extend this
study in connection with an important class of special periodic trajectories,
which arise in non-conservative and non-linear systems.

From the preceding analysis of a few simple motions, it appears
that the trajectories of dynamical systems exhibit the following principal
properties:

a. They may approach singular points either for t = + 00,
or t = -oo, or for both. These points, as was shown, generally

correspond to the points of equilibrium of a system.

b. The trajectories may be closed and hence correspond to
periodic motions.

c. The trajectories may either go to infinity or arrive

from infinity.

We shall be interested primarily in the stationary states of dynam-
ical systems, that is, in the above specified Cases a and b. As regards to
Case c, the non-stationary motions, it is of relatively little interest in
applications. In fact, when we say that a trajectory "goes to infinity" or
"arrives from infinity," we mean that a physical phenomenon is encountered

which cannot be studied entirely within the range of observation. The tra-
jectories of Type a characterize motions in the neighborhood of equilibrium,

and the problem of stability in this case is that of equilibrium. The mo-
tions of Type b possess also certain other features of stability which will
be defined later.

Insofar as the stability of equilibrium is concerned, the preceding

definition of stability for motions occurring in the neighborhood of focal,

nodal, and saddle points does not present any difficulty. In fact, the rep-

resentative point R approaches the focal and nodal points if they are stable



and leaves these points (or "approaches" them for t = - o) if they are un-

stable. A saddle point is always unstable* in this sense.

The usual definition of stability as an asymptotic approach to the

equilibrium position ceases to be convenient, however, if we consider it in

connection with motions around a vortex point. In fact, trajectories in this

case do not approach this singularity although the potential energy is mini-

mum for that point as required for a stable equilibrium. These considerations

led Liapounoff to formulate a definition of stability sufficiently broad so

as to be applied to both equilibrium and stationary motions.

17. STABILITY IN THE SENSE OF LIAPOUNOFF

We shall give first an intuitive geometrical definition of stabil-

ity and supplement it by an analytic definition.

Consider a closed trajectory C. The motion of the representative

point R on this trajectory clearly represents a periodic motion. The geomet-

rical formulation of stability of the motion in the

sense of Liapounoff can be visualized as follows.

Assume that during the motion of R on C C C'

the system has received an impulse translating R

abruptly into R', a point which lies on a neigh- R y

boring closed trajectory, C', as shown in Figure

17.1. Let us consider the "perturbed motion" of

R' on C' in relation to the unperturbed one of R

on C. If the initial distance po = RR', origin- Figure 17.1
ally small, remains small throughout the subse-

quent motion, the motion is stable in the sense of Liapounoff; if, however,

after a certain finite time, this condition ceases to be fulfilled, the mo-

tion is unstable.

It is to be noted that this statement requires that the curves C

and C' be close to each other. The proximity of curves C and C' is not suf-

ficient to insure the stability of motion occurring on these curves unless

the condition that the distance RR' between the representative points follow-

ing the trajectories C and C' and considered at the same instant remains

small for all value of t, be fulfilled.

* Only in a purely theoretical case when the motion of R takes place along the stable separatrix or

asymptote, AIS in Figure 3.1, of a saddle point, the latter may be considered as a stable singularity.

In Part IV we shall see that under special conditions R may follow a trajectory situated in the neigh-

borhood of a stable separatrix and may give the impression for a limited time that a saddle point is a

point of stable equilibrium. Hence one could better describe the stability of a saddle point by intro-

ducing the term almost unstable singularity.
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This can be seen easily from the following example. Assume that

the curves C and C' are two concentric circles whose radii differ by a small

quantity Ar. If, for t = 0, the points R and R' are situated on the same

radius, the distance RR' will be small. It follows that, if the motion is to

be stable in the above sense, the points R and R' must remain on the same

radius in order that the distance between these points remains small for all

values of t. This implies that the two motions must be strictly isochronous.

In this particular instance the motion is clearly that of a conser-

vative system with two slightly different amplitudes. We conclude therefore,

that in general the motions of conservative systems may be stable in the

sense of Liapounoff only when they are strictly isochronous, that is, when

the period of motion of R on C is exactly equal to that of R' on C'. In gen-

eral the condition of isochronism is only approximately fulfilled in conser-

vative systems so that such motions are generally unstable in the sense of

Liapounoff for all values of t, although they may be considered as temporar-

ily stable if, for a limited time, the motions are almost isochronous in some

region. We shall see later that there exist special periodic motions ob-

served in non-linear systems which, on the contrary, exhibit stability in the

sense of Liapounoff for all values of t.

After these preliminary remarks we may now formulate the precise

analytic definition of stability. Let x = x(t, x0, Yo) and y = y(t, x0, yo)
be the coordinates in the (x, y)-plane determining a periodic motion on a

trajectory C, with a period T. By this we mean that x(O) = x(T) and y(O) =

y(T).

We shall call the motion stable in the sense of Liapounoff if, to any given number
E > 0, another number 77 can be found such that jxo - xol < E, Io - Yol < E implies Ix(t, xo, Yo)
- x(t, x, Yo)I < 7; 1y(t, xo, yo) - y(t, o0, Yo) < 7 for all t , where o, 0 are the

slightly modified initial conditions x0, Yo.

When the trajectory C reduces to a point, Liapounoff's definition

reduces to that of stability of equilibrium. This chapter will only deal

with the stability of equilibrium.

18. CANONICAL FORMS OF LINEAR EQUATIONS; CHARACTERISTIC EQUATION;
CLASSIFICATION OF SINGULARITIES (POINCARE);
BRANCH POINTS OF EQUILIBRIA

We shall now investigate the problem of stability of equilibrium

more systematically by showing its relation to the nature of the singulari-

ties of dynamical equations. Let us consider the system of differential

equations

x = ax + by; y = cx + dy [18.1]

W i tii ll YIUt i Il
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where a, b, c, d are constants. In the phase plane this leads to the differ-

ential equation of the trajectories

dy cx + dy
dx ax + by

A general non-linear system can be represented by equations

x = ax + by + P'(x,y); y = cx + dy + Q'(x,y) [18.3]

with

dy cx + dy + Q'(x,y)
dx ax + by + P'(x,y)

where P'(x,y), Q'(x,y) are polynomials which have neither constant terms nor

linear terms in x and y. Under relatively broad assumptions, it can be shown

(16) that in the neighborhood of x = y = 0 the investigation of [18.4] can be

reduced to that of [18.2].

By means of a linear transformation of variables

S= ax + fly; 7 = yx + 6y [18.5]

with y 6 0* where a, 8, y, 6 are suitable constants, we can reduce the

system [18.1] to the canonical form

= S1 ; = S277 [18.6]

where S, and S 2 are constants. In fact, from Equations [18.5] one has

= x + By; 7 = yx + 6y [18.7]

Substituting i and y from Equations [18.1] and and q from Equations [18.6]

into [18.7], we have identically in x and y

S,(ax + fy) = a(ax + by) + #(cx + dy)

[18.8]
S 2(yx + 6y) = y(ax + by) + 6(cx + dy)

Identifying the coefficients of x and y one obtains

S(a - S1) + 8c = 0; y(a - S2) + 6c = 0

[18.9]
ab + 9 (d - S 1) = 0; 7b + 6(d - S2) =0

The first system contains a and f, the second y and 6 considered as the un-

knowns. Non-trivial solutions exist only when S1 and S 2 are the roots of the

* This implies a one-to-one correspondence of the transformation.
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quadratic equation

a-S c
b d-S =0 [18.10]b d - S

or written explicitly

S2 - S(a + d) + (ad - cb) = 0 [18.11]

Equation [18.11] is called the characteristic equation of system [18.1]. The

two pairs of equations, [18.9], reduce now to two equations one of which de-

termines the ratio a/f and the other the ratio /6, assuming S, - S2 and

ia/lt + , that is 1 0. Conversely, if I 0, then the roots S,
and S2 of [18.11] are unequal as seen from [18.9] unless S1 = S2 = a = d,
b = c = 0, in which case the original system [18.1] is already in canonical

form.

Since we have assumed that a * 0, [18.5] can be solved for x

and y yielding the set of equations

6x - ; = + a [18.12]

where A = l 61. If we choose a = - cA, f = (a - S1 )A, Y = cA, 6 =

- (a - S 2)A, Equations [18.9] are satisfied and therefore [18.12] can be

written as

x = (S, - a)4 + (S 1 - a) n; y = - c4 - cr [18.13]1

Equations [18.13] will transform the system [18.1] into the canonical form

[18.6].
Thus far the system [18.1] was considered. By a similar procedure

it can b# shown that the more general system [18.3] can be reduced to a canon-

ical form given by

c(S 1 - S2) [cP'((,7) + (Si -a)'(,n)

[18.14]

c(S 2) cP'(( ,) + (S2 - a)Q'(,77)

where x and y have been replaced by their expressions [18.13]. If the roots

S1 and S2 of the characteristic equation are complex conjugate, then it can

be shown, see Theorem 3 on page 45, that 4 and n are also conjugate complex.
Letting 4 = u + iv, n = u - iv, S 1 = al + ib, S, = a, - ibl, and equating
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real and imaginary parts of [18.14] one gets

1
it = alu - bi v - Q'(u, v)

2c

[18.151

v = bu + a1v + [cP'(u,v) + (a, - a)Q'(u,v)i = blu + av +2blC

These relations, which hold when the roots S1 and S2 of [18.11] are

conjugate complex, can be obtained directly from [18.3] by an application of

the transformation

x = 2(a, - a)u + 2biv; y = - 2cu [18.16]

The latter result is obtained by substituting the values of and n in terms

of u and v into [18.13].

Once the possibility of the canonical transformation has been es-

tablished we can proceed with the analysis of the various cases arising from

the nature of the roots of the characteristic Equation [18.11]. We assume

hereafter that S, * S2. We further assume SIS2, 0, that is, l 0.
When a f = 0, [18.2] reduces, if a * 0, to the simple equation

Y 61

dy acx + ady c
dx a(ax + by) a

THEOREM 1. When the roots S 1 and S 2 are real and of the same sign, the system [18.11

has a nodal point at x = y = 0.

From the canonical Equations [18.6] we get

d77 = S2  7 [18.17]

Separating the variables and integrating we have

a = C a  [18.18]

where a = S2/S1 > 0 and C is a constant. The phase trajectories are parabolic

curves. For a > 1, the curves are tangent to the c-axis at the origin of co-

ordinates ( = n = 0) except for the singular curve = 0 corresponding to

C -oo. For a < 1 the curves are tangent to the '-axis, except for the singu-

lar curve n = 0, corresponding to C = 0. If S, and S2 are both negative, it

follows from the canonical Equations [18.6] that the representative point in

the phase plane approaches asymptotically the point = n = 0 for t + o.

We have then a stable nodal point. If S, and S 2 are both positive the nodal

point is unstable. Passing from the ((,n) to the (x,y)-coordinates one finds
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the topological picture of trajectories shown in Figure 6.1, already estab-

lished by an elementary procedure. There is an infinity of trajectories

either approaching or leaving a nodal point.

THEOREM 2. When the roots S 1 and S 2 are real but of opposite signs, the system

[18.1] has a saddle point at x = y = 0.

In this case

dr 7 [18.19]
d = - " [-8.19

where a = S2 > 0. Integrating, we have
S,

= - C-a [18.20]

The phase trajectories are hyperbolic curves referred to the axes as asymp-

totes. The representative point (assuming S1 > 0 and S 2 < 0) being placed

close to the c-axis, will move away from the origin as follows from the first

Equation [18.6]. However, if it is placed near the n-axis it will first ap-

proach the origin, as follows from the second Equation [18.6], and then move

away from the origin along the branch approaching the c-axis asymptotically

as shown in Figure 4.1. The picture is thus typical for a saddle point as

previously defined. There are only two singular trajectories, the asymptotes,

which pass through a saddle point. In the (x,y)-plane the trajectories in

the neighborhood of a saddle point are deformed and the asymptotes are in-

clined to each other by an angle different from r/2 in general.

THEOREM 3. When the roots S, and S2 are conjugate complex the system [18.1] has a

focal point at x = y = 0.

For real x and y, we shall show that, when S, and S2 are conjugate

complex, and n must be also conjugate complex. Putting i = u + iv and n =

u - iv, [18.6] become

du dv
dtu + i dv = S = (a, + ibl)(u + iv)
dt dt

[18.21]

du dv
dt -idt = S 2 77 = (a - ib)(u - iv)

That is

du dv
dt = alu - bv; dt = av + blu [18.22]

Thus, the velocities 4 and v are real in the new coordinates u and v. In the

phase plane (u,v) the differential equation of trajectories is

dv blu + av [8.2
du au - b v [8.2



Transforming into polar coordinates, u = r cos 0, v = r sin 0, we find

d r [18.24]
de bl

whence r = Ce b, Thus, in the phase plane (u,v) the trajectories are loga-

rithmic spirals and the point, u = v = 0, is an asymptotic point, the focal

point of trajectories.

Multiplying the first Equation [18.22] by u, the second by v, add-

ing and letting u 2 + V2 = p, we find

1 dp = alp [18.25]
2dt

For a1 < 0 the representative point approaches asymptotically the focal point

which is thus a stable focal point. For a1 > 0 one has an unstable focal

point. If one now passes from the (u,v)-

plane to the original (x,y)-plane, the p

general nature of motion remains the same Stoble

but the spirals are distorted in the (x,y)-ints -4=0

plane as shown in Figure 5.1.
Stable

Summing up these results, the A Focal Points

following criteria can be given: Soddle E
Points

1. If S, and S 2 are real and nega- D

tive one has a stable nodal point, Unstable
Focal Points

2. If S I and S2 are real and posi- =Unstable
Nodal

tive one has an unstable nodal point, Points

3. If S, and S 2 are real and of Figure 18.1
opposite sign one has a saddle point,

4. If S1 and S2 are conjugate complex with R*[Sl, 2 ] < 0, one has a

stable focal point,

5. If S, and S 2 are conjugate complex with R[S 1 ,2] > 0, one has an

unstable focal point.

These various cases can be represented graphically as shown in Fig-

ure 18.1 by putting p = - (a + d), q = ab; the characteristic Equation

[18.11] becomes then

S2 + pS + q = 0 [18.26]

R represents the real part of S 1 , 2 .
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If one takes p and q as rectangular coordinates, the zones of distribution

of the roots in Cases 1 to 5 are shown in Figure 18.1. For q < 0, i.e.,

ad - cb < 0, the roots S and S2 are real and of opposite signs; hence the

region to the left of the axis of ordinates, q = 0, represents the zone of

saddle points.

The parabola p2 - 4q = 0 separates the half plane, q > 0, into four

regions:

1. p > 0, p 2 < 4q; the roots in this case are complex conjugate with

R[SI,2] < 0, hence this region (vertical shading) corresponds to the stable

focal points.

2. p > 0, p2 > 4q; the roots are real and negative; this zone (oblique

shading) corresponds to the stable nodal points.

3. p < 0, p2 < 4q; the roots are complex conjugate with R[S 1,2] > 0,

hence, the unstable focal points (double shading).

4'. p < 0, p 2 > 4q; both roots are real and positive; hence this region

(horizontal shading) corresponds to the unstable nodal points.

If one traces a rectangular circuit ABCD surrounding the origin

with a positive direction indicated by the arrow and proceeds from A to B,

one passes from the domain of saddle points to that of stable nodal points

and from there to stable focal points; proceeding along BC the stable focal

points become unstable; the branch CD is inverse to AB. The origin O ap-

pears, thus, as a branch point of equilibrium, insofar as several kinds of

equilibrium exist in its neighborhood. It is seen that the nodal points are

the singularities intermediate between the saddle points (always unstable)

and the focal points. If the latter are stable, the intermediate nodal region

is also stable; if the focal points are unstable, the intermediate nodal re-

gion is unstable. The threshold p 2 - 4q = 0 corresponds to the transition

between nodal and focal points, hence between the aperiodic motions and os-

cillatory damped motions.

19. STABILITY OF EQUILIBRIUM ACCORDING TO LIAPOUNOFF

Consider a system with one degree of freedom x in the neighborhood

of equilibrium x = xo corresponding to t = to . According to Liapounoff, the

equilibrium is called stable if, for any arbitrary small number E,one can de-

termine another number 6 = 6(c) such that

Ix(t) - Xo < E for to t <+ oprovided xI(to)- xo< 6

which means that if the original departure Ix(to) - xol of the system from

the position of equilibrium xo is small, the subsequent departures Ix(t) - Xol
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from that position will also remain small in the course of time. We shall

apply Liapounoff's criterion to a simple case which will serve to illustrate

its physical significance.

Since in this particular case we are interested primarily in small

deviations from the position of equilibrium, x = xz, let x = x0 + 4, |( be-

ing small. Let the differential equation of motion be

dx -dx = f(x) [19.1]
dt

where f(x) is assumed to be analytic at the point x = xz. Substituting for

x its value and developing f(xo + ) in a Taylor series we have

dt= f (xo + f) = f(x0) + f (xo) + f "(xo) + . . [19.2]

By virtue of the assumed equilibrium for x = x0, Xo is a singular point, and

therefore f(xo ) = 0. Equation [19.2] thus reduces to

-.
d = aj + a24

2 + [19.3dt

where

a1 = f'(x o), a2 - f"(x)
2!

The method of Liapounoff consists of the following procedure: Upon dropping

the non-linear terms in in [19.3] one has

d = al [19.4]
dt

Liapounoff's theorem states that under certain conditions which

will be specified later and which are frequently encountered in physical

problems, the information obtained from the linear equations of the first

approximation is sufficient to give a correct answer to the question of sta-

bility of the non-linear system.

The solution of [19.4] is = Ce at where a, = f'(xo). Hence, ac-

cording to Liapounoff, if a, < 0 the equilibrium is stable; if a, > 0 it is

unstable; finally, if a, = 0 the equation of the first approximation is not

applicable and a special investigation is needed. Liapounoff also indicates

additional criteria required for the investigation of stability when a, = 0.

For the present we shall limit ourselves to the more general case when a, * 0

which occurs frequently in physical problems.

The proof of the Liapounoff theorem in the more general case of

Equations [3.4] is given in Section 20. In the case considered here, the

IIIIIIIII IIIYI I I HAI Ml



proof is very simple and will enable us to exhibit Liapounoff's line of argu-

ment. If one multiplies both sides of [19.2] by , one has

1 d(4 2 ) 2 3
a

2 +t a 2 3  +- ()
2 dt

[19.5]

One notes that F(O) = F'(0) = 0 and F"(0) = 2aj. This gives

dp z -d = - F"( )
dt 1-2

[19.6]

1 2
where p = ~ and 0 < 0 < 1. In view of the assumed continuity of F"(4), it

is apparent that if F"(0) < 0, that is, if a, < 0, F"(0f) < 0 for small II,

and therefore dp/dt < 0. Hence, if p =1 2 decreases initially, it will con-

tinue to decrease, since the right-hand term of [19.6] is negative in the

neighborhood of x = x0, and therefore the equilibrium is stable. Likewise,

if F"(0) > 0 by a similar argument, one finds that the equilibrium is un-

stable. It is seen from this particular example that the equation of the

first approximation gives a correct answer to the question of stability of

the non-linear Equation [19.5], the only limitation of the procedure being

the condition that a, - 0.

One can also illustrat

Consider the diagrams shown in I

N

xo

z.

M N

xo

Figure 19.1

Figure 19. 1

te the preceding considerations graphically.

Figure 19.1 in which z = f(x) is plotted

against x. Figure 19.1a shows a mon-

otonically decreasing f(x); further-

more, f(xo) = 0. In this case f(x) > 0

to the left of x0 and f(x) < 0 to the

right of x0 . Liapounoff's method con-

(a) sists in replacing the curve MxoN in

the neighborhood of x0, by the tangent

at x0, that is by the function

a1 (x - x0 ), provided a, * 0. The di-

rection of velocity dp/dt is indicated

on the lower part of Figure 19.1a. It

(b) is seen that this velocity is positive,

i.e., directed to the right, for x < x0

and negative, i.e., to the left, for

x > x0 which clearly indicates a stable

equilibrium at x0.

Likewise, when f(x) is in-

(C) creasing, Figure.19.1b, (from negative

values for x < x0 to positive ones for



x > xo), one concludes, by similar reasoning, that the equilibrium is un-

stable. When f(x) has a minimum for x = x0 with f(x o ) = 0, the question of

equilibrium becomes more complicated. In fact, the system approaches x = xo
for values x < zx0 as a point of stable equilibrium; for x > x0 it moves away

from the point x = x0 as from a point of unstable equilibrium. One can des-

ignate this case, shown in Figure 19.lc, as a half-stable equilibrium, i.e.,

stable for x < x0 and unstable for x > x0. This half-stable case corresponds

to a1 = 0, in which case the equation of the first approximation ceases to be

applicable, and the consideration of higher order terms becomes necessary.

20. LIAPOUNOFF'S THEOREM

In physical problems the Liapounoff theorem is generally encountered

in connection with the dynamical systems

dx P(x,y); L Q(x,y) [20.1]
dt dt

which are represented in the phase plane by trajectories, and the formula-

tion of the Liapounoff theory depends then on the analytical form of Equa-

tions [20.1].

The differential equation of phase trajectories is of the form

dy = Q(x,y) [20.2]
dz P(x,y)

The positions of equilibrium as was shown are identified with the singular

points.

The preceding analysis was made under the assumption of a linear

approximation in the neighborhood of x = y = 0 when P and Q are of the form:

P = ax + by; Q = cx + dy. We have to consider now a more general case, that

is, Equations [18.3] and [18.4]. A point (xo,y0 ) of equilibrium is clearly

a point of intersection of the curves P(x,y) = 0, Q(x,y) = 0. In order to be

able to analyze the stability of equilibrium it is necessary to give a small

departure ( ,) from the equilibrium point; the new coordinates are now x =

X0 + i, y = y0 + n. To simplify the procedure, the origin of coordinates can

be transferred to the point (x , o0 ); furthermore, P(x,y) and Q(x,y) can be

expanded in a Taylor series. The differential Equations [18.3] become

d = a + b7 + [p, + 2 ,p2 + P22

[20.3]

d = c + d + qn 2 q 12 + q2217 +

IWINNN IIIN 11011M



where the non-written terms of Taylor's expansions are at least of third de-

gree in , r7 and a = Px(xo,yo); b = Py(xoYo); c = Qx(xo,yo); d = QY(xo, yo):

The theorem of Liapounoff states: If the real parts of the roots of the char-

acteristic equation corresponding to the equations of the first approximation are different from

zero, the equations of the first approximation always give a correct answer to the question of

stability of a non-linear system.

More specifically, if the real parts of these roots are negative,

the equilibrium is stable; if at least one root has a positive real part, the

equilibrium is unstable.

The starting point for this proof is to reduce the non-linear sys-

tem to a canonical form by making use of [18.13] and [18.14]. Thus we have

du = + (pj 1 U 2 + P 2 uv + pV2 
2) +

d t 1 1 + PlsUV + P22
[20.4]

dv= S 2 v + (qnu + q 2uv + q 2 v 2 ) + .2

dt 2 1 22

where pn,- * ', q22 are the new constants. Multiplying the first Equation

[20.4] by u and the second by v and adding, one obtains

1 dp = S 1 u 2 
+ S2 2+ + qm (u,v) [20.51

2 dt

where p = 2 + v2 . Let us now investigate the behavior of the curve ¢(u,v) =

0 in the neighborhood of the point u = v = 0 for different forms of the roots

of Equation [18.10] and thus establish the above stated theorem.

1. Consider first the case when S, and S2 are both real and negative.

In this case the surface z = ¢(u,v) has a maximum z = 0 at the origin and the

curve ¢(u,v) = 0 reduces to one point, u = v = 0. Write

1(U,V) = S 1 u
2 

+ S 2 v
2 

+ O(U,V)

whence

1 dp =SU2+ S2 V2+ + (u,v) [20.6]
2 dt

We can find a region S, Figure 20.1, around the point u = v = 0, where

I(u,)l < I u2 + S2 v2, so that <(u,v) < 0 in S with the exception of the

point u = v = 0, where 0(0,0) = 0. Moreover, for all points (u,v) in S

1 d I I(Su2 + S2 2) [20.7]
2 dt 2 [

Let 6 be a circular region situated inside S. If the point R is initially

placed inside 6 it is easy to show it will never cross the boundary of 6.
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v

S S

Figure 20.1 Figure 20.2

In fact, for all points of 6, with the exception of the origin, dp/dt < 0 so

that lim p = po0  0 necessarily exists and is reached decreasingly. If

po > 0, then for t 2 to sufficiently large, R remains inside S but outside

the circle with center at 0 and radius p0/2. It follows, if ISI IS,I,

that ISu 2 + S2"v2 1 > IS1I (u 2 + v 2 ) IS11 po2/ 4 for t t o . From [20.7],

we have

1 dp 1 Po IS> 0, t > t o
2 dt =2 4

p(t) - p(to) dt > 1 I - to)
to

and lim p(t) = o which is impossible. We have thus shown that lim p(t) = 0.
t ->-0 t 30

Hence the equilibrium is stable.

2. When S, and Sz are both real and positive, the surface z = 0(u,v)

has a minimum z = 0 at 0, and the curve 0(u,v) = 0 reduces to the point, u =

v = 0. Hence, there exists a region S around 0 in which 0(u,v) > 0 with the

exception of point 0 for which 0(0,0) = 0. As the region E we can take now

a circle lying inside S, Figure 20.2.

It can be shown that it is impossible to determine a region 6 such

that if a point R is placed initially in 6 it would not reach the boundary of

E after a finite time. Let us assume first that such a region 6 exists. Fur-

ther, let R be placed in any point of 6 except at the origin. Since q(u,v) =

dp/dt > 0 inside S except at the origin, the distance OR increases monotoni-

cally as long as R remains in S. Let po = u2 + 2 = OR for t = 0 and p,

u2 + v2. It is apparent that in the region between p = po and p = p,, the

function 0(u,v) and hence dp/dt has a positive lower bound. It follows that

R will move in the annular region between po and p, with a non-zero velocity
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I S and will reach the boundary of E after a finite

time which is contrary to our assumption. Hence,

it is impossible to specify such a region 6, and

the equilibrium is therefore unstable.

3. If S, and S2 are real and of different

signs, the surface z = ¢(u,v) has a saddle-shaped

extremum, and the curve ¢(u,v) = 0 has a node

with two distinct tangents at the origin. The

region S has in this case two zones, say I and

II, in which 0(u,v) > 0 and two others, III and
Figure 20.3

IV, in which 0(u,v) < 0 as shown in Figure 20.3.

We propose to show that the equilibrium in this case is unstable. Before pro-

ceeding with the proof, it is first necessary to obtain the sign of d2p/dt2.

Differentiating Equation [20.5] and substituting du/dt and dv/dt from [20.4],

one obtains
1 dp S 2  S 2  1(u [20.8]

- dt 2 -

The surface z = ¢1 (u,v) has a minimum z = 0 at the origin; hence, there ex-

ists a region S' around 0 for which 01(u,v) > 0, with the exception of the

origin for which 01(0,0) = 0. Thus in this region d 2p/dt2 > 0. We now can

give the proof of the instability of equilibrium in this case. For the re-

gion c take a circle situated inside of both regions, S' and S, and drawn

from the origin as center. It will be shown that it is impossible to deter-

mine a region 6 containing the origin and such that if a point R is placed

initially at any point of this region except the origin, it would never reach

the boundary of e.

Assume that such a region 6 exists. Since 6 surrounds the origin,

there exist points inside 6 for which 0(u,v) > 0, and hence dp/dt > 0. If

R is placed initially at such a point, it is clear that for this point

d 2p/dt2 > 0 for the region E is situated inside S', by assumption. R will

start moving with an accelerated velocity and will reach the boundary of E

in a finite time, as dp/dt is monotonically increasing. This is contrary to

our assumption concerning the existence of such a region. Hence, it is im-

possible to determine a region 6 satisfying the above requirement, and the

equilibrium is unstable.

The same conclusions reached in Cases 1, 2, and 3 hold when we

transform the (u,v)-plane into the ( ,n)-plane.

4. Finally, when the roots of the characteristic equation are complex

conjugate, that is S1 = a, + ib, and S2 = a1 - ib1 , then using a procedure
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analogous to that given in Theorem 3 of Section 18, the non-linear system

[20.4] can be reduced to

dul dv1
dt = alul - b lvl + dt - av + b lu l +  [20.9]

where the non-written terms are at least of the second order in u I or v1.

Multiplying the first Equation [20.9] by ul, the second by v1, and adding,

we have

2 dt = al(u + v ) + . . (u,v 1) [20.10]

where p = u2 v 1
2 , and the non-written terms are at least of the third de-

gree. One can show as above that the existence of either maximum or minimum

depends on the sign of a1 . If a, < 0, the equilibrium is stable; if a, > 0,

it is unstable. This completes the proof of the theorem.

The advantage of the Liapounoff theorem lies in the fact that it

enables one to apply equivaldnt linear criteria of stability to essentially non-linear systems

and establishes the conditions under which this equivalence is valid. If these conditions

are fulfilled, the theorem gives a correct answer at once, if not, one is

confronted generally with a more difficult problem. This occurs, for in-

stance, at the point E in Figure 18.1 at which the circuit ABCD intersects

the q-axis (p = 0). At this point the roots S, and S2 of the characteristic

Equation [18.11] become purely imaginary, and the equations of the first ap-

proximation of Liapounoff cease to be applicable.*

Omitting this exceptional case which generally corresponds to a

branch point of equilibrium (Section 27) in a great majority of practical

problems, the Liapounoff theorem yields the conditions of stability in a

relatively simple manner. An example is given in the following section.

21. EQUILIBRIUM OF A CIRCUIT CONTAINING A NON-LINEAR
CONDUCTOR (ELECTRIC ARC)

Consider a circuit as shown in Figure 21.1 where A is an electric

arc whose characteristic Va = 0(i) is indicated in Figure 21.2. By Kirch-

hoff's laws, we have

di dV
V = L i+ P (i); E = RI + V; I = i + C d [21.1]

dt dt

* It must be noted that, in the general theory of equilibrium, Liapounoff also considers in detail a

series of particular cases which lie outside the range of validity of equations of the first approxima-

tion. We shall encounter one such case later. It is impossible, however, to give a full account of

the Liapounoff theory here.
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E-Ri =V

R L

i \v= 0(i)

E C A 2

0
Figure 21.1 Figure 21.2

Eliminating I between Equations [21.1], one has two equations

dV E - V - Ri di V - P(i)
dt RC ' dt L [21.2]

For equilibrium (dV/dt = di/dt = 0) one has

Vo = E - Rio; Vo = i(io) [21.3]

From Figure 21.2 it follows that for the assumed form Va = 0(i) of the char-

acteristic there exists either three or one position of equilibrium depending

on the intersection of the line V = E - Ri with the curve Va. Let Vo and io
be the coordinates of an equilibrium point and consider the small departures
v and j from this point, so that the "disturbed values" of V and i are now

V = Vo + v; i = io + j [21.4]

Developing the function 0(i) in a Taylor series in the neighborhood of io we
find

0 (i o + j) = o(i) + jG'(io) + • • • [21 .5]

Following Liapounoff's method, the equations of the first approxi-
mation are obtained by substituting the values [21.4] and [21.5] into [21.2].

Upon canceling the steady-state terms, we find

dv v j dj v .p
dt RC C 'C; dt L L[21.6]

where p = 0'(i o ) is the tangent to the characteristic of the are at the point
i o which has the dimension of resistance. The quantity 0'(io) = p varies
with io on account of non-linearity of the characteristic. On the branch BC,
Figure 21.2, where the curve 0(i) is falling, p < 0; this branch is commonly

designated as the range of the negative resistance of the are.



The characteristic equation of the system [21.6] is

S 2  + + ) 0
RC L LC R

[21.7]

and its roots are

SL + RCp + 1 L 2 + (R 2- 2RLCp - 4LCR 2 [21.8]
1,2 2RCL - 2RCL

The nature of the roots depends

Since we are interested in the non-linear

three two-dimensional "cross sections"

(R,p), (L,p), and (C,p) of the four-

dimensional manifold (R, L, C, p) of

parameters will be sufficient for

this analysis. The parameters R, L,

and C can have only positive values,

whereas p may have both positive and

negative values determined respec-

tively by the branches AB and BC of

the characteristic.

1. Diagram in the (R,p)-plane,

Figure 21.3.

The quantity under the

square root in [21.8] can be written

as

(L - RCp)2 - (2

on four parameters R, L, C, and p.

problem, involving the parameter p,

Figure 21.3

R Yi C )2

The condition for complex roots is therefore

(L - RCp) 2 - (2R L-C-)2 < 0

This leads one to consider the following two equations

L - RCp + 2R - = 0; L - RCp - 2RL- = 0

[21.9]

[21.10]

These equations represent hyperbolas in the (R,p)-plane, shown by Curves 1

and 2 in Figure 21.3, corresponding respectively to the first and second

Equations [21.10]. The p-axis is an asymptote for both hyperbolas. The

lines p = 2L /C and p = - 2/L/C are asymptotic to Curves 1 and 2 respectively.

Thus, we see that the area between Hyperbolas 1 and 2 is the region of dis-

tribution of the complex roots of the characteristic equation, that is, the

focal points. To distinguish between the stable and unstable focal points

INIR



we equate R[S] to zero and obtain

L + RCp = 0 [21.11]

Since R, L, and C are positive,Equation [21.11] implies that p < 0. It is

also to be noted that CRp + L = 0 is a hyperbola having the axes R and p as

asymptotes; see Curve 3, Figure 21.3. The region between Hyperbolas 2 and 3

to the right of the Point M, their intersection, is thus the zone of unstable

focal points. From the definition of the latter it follows that, within this

range, self-excitation of oscillation is possible because the oscillations

increase on the divergent spiral issuing from an unstable focal point. It is

further observed that no unstable focal points, and hence no self-excitation

of oscillations, are possible for p > 0. This is, however, only a necessary

condition. In fact, not for every negative value of p is self-excitation pos-

sible. For sufficienltly large values of p < 0 which correspond to points in

the region below Curve 3 both necessary and sufficient conditions of self-

excitation are satisfied.

It is further seen that the limit of the range of saddle points is

determined by the straight line R + p = 0, Curve 4. For when R + p < 0, the

roots of the characteristic equation are real and of opposite sign. It is

seen thus that p < 0 as R is positive. Thus, the region below Curve 4 is the

region of saddle points and, hence, of instability. Physically this means

that energy is supplied to the system from an external source at a rate

greater than its rate of dissipation. Thus the phenomenon "runs away," that

is, either the circuit is destroyed or the fuses are blown out.

It is to be noted that Point M of intersection of Curves 2 and 3

has coordihates + YL/C and - VL/C, that is the Straight Line 4 passes through

this point. This completes the picture; for as we have shown previously, the

region of focal points is generally separated from that of saddle points by

an intermediate region of nodal points. We infer, therefore, that the area

between Curve 2 and Straight Line 4 is the zone of nodal points. The region

of nodal points to the left of and above M corresponds to stable nodal points;

that to the right of and below M contains the unstable nodal points. Point M

is thus a point of bifurcation for the various types of equilibria. Hence,

in following a closed circuit ABCD surrounding the point M in the direction

indicated, the transition of singularities in the order indicated in Figure

21.3, i.e., saddle points - stable nodal points - stable focal points - un-

stable focal points + unstable nodal points + saddle points, can be found.
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2. Diagram in the (L,p)-plane, Figure 21.4.

The limits of the zone of distribution of complex roots, that is,

of the focal points, is given by the equation

L 2 + (RCp)2 - 2RCLp - 4LCR 2 = 0 [21.12]

that is

P RC 2 [21.13]

In the (L,p)-plane Curve 1 represents the two branches of Equation

[21.13]. It passes through the origin and has a vertical tangent at this

point. The line p = L/CR is an asymp-

tote of this curve. Furthermore, the P

curve crosses the L-axis at the point Stable
Nodal

L, = 4R 2C and has a horizontal tan- Points

gent passing through the point (- R, 1
R 2C). Unstable Stable Focal Points

Nodal I L
The zone of distribution of Points o -

stable focal points is separated from tNodal

that of the unstable focal points by / Points
Unstable /

Straight Line 2, given by the equation Focal
Points Saddle Points

L + RCp = 0, since this equation deter- 2

mines the condition for which the real

part of the complex roots will vanish. Figure 21.4

Furthermore since L, R, and C are pos-

itive, this condition is fulfilled for

p < 0 as defined by jpl = L/RC; the slope of Line 2 is thus tan 8 = - 1/RC.

Within the zone of the complex roots Straight Line 2 separates the region of

stable focal points from that of the unstable ones; the self-excitation of

oscillations is possible only in the latter region. One concludes, there-

fore, that self-excited oscillations are possible only:

a. for negative p, i.e., falling characteristic of the arc, and

b. for not too great values of the inductance L.

These facts are well known experimentally. The zone of saddle points is ob-

tained, as in the first case (R,p) for - p > R. The straight line p = - R,

shown as Line 3 in Figure 21.2, is thus the threshold separating the region

of saddle points from the other singularities. Finally, between the p-axis

(L = 0), Straight Line 3 on the one hand and Curve 1 on the other hand, lies

the region of nodal points. Following the diagram of Figure 21.4 one

- -- III IIYIIIYIYI111 1 10ilhli all W.,
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discriminates easily between the stable and the unstable nodal points. Points

0(p = L = 0) and M(p = - R, L = R 2C) are the branch points of equilibrium.

3. Diagram in the (C,p)-plane, Figure 21.5.

The procedure remains the same.

a. One finds the zone of the distribution of complex roots,

i.e., of focal points.

b. One finds the line separating the stable focal points

from the unstable ones. This line is obtained again by equating

to zero the real part of the complex roots.

c. The line separating saddle points from other singularities

is the same as in the other cases considered, viz: R + p = 0.

d. The wedges between the zones of distribution of saddle

points on the one hand, and the focal points on the other, represent

the zones of distribution of nodal points, stable or unstable.

The two-dimensional "cross sections" (R,p), (L,p), and (C,p) of the

four-dimensional manifold (R, L, C, p) of parameters thus permit us to estab-

lish general criteria of stability of

P,1 equilibrium in a circuit of this kind.

From elementary considerations of

Stable Stable Nodal Points
\  static equilibrium of a circuit con-

Points S le taining an arc it is known that there
Stabl

Focal Points c is, in general, either three or one

Unstable equilibrium points as follows from the
Focal

/ Points (V,i )-diagram of Figure 21.2 in which
Unstable

Nodal Points the series resistance R appears as the

tangent of the angle a of the straight

Saddle Points line intersecting the characteristic

Va of the arc (tan a = R). We shall

analyze the conditions of stability of

Figure 21.5 equilibrium, in the case when three

equilibrium points exist, at the

Points 1, 2, and 3, respectively, in the light of the preceding study of the

"cross sections" of the phenomenon.

First, for Point 1, p > 0 as follows from all three diagrams, the

singularities in this half-plane (p > 0) are stable. Point 1 is thus a po-

sition of stable equilibrium. Consider now Point 3 of equilibrium, Figure

21.2, p < 0. Since in the (V,i)-diagram the resistances are represented by

the tangents to the curves, it is seen that the condition of equilibrium at

1 I UlIIl Y IYIUm Ul luub
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this point is expressed by the fact that lp < R; that is, the absolute value

of the tangent to the falling characteristic of the arc is less than the pos-

itive inclination of the ohmic drop line. There exists a rule, known as

Kaufmannts criterion of stability (17) which states that, if at the point of

equilibrium Jp1 < R, the equilibrium is stable; if Jp1 > R, it is unstable.

This criterion was found useful for a majority of applications. Later we

shall see that certain ambiguous cases were discovered in which this criteri-

on gave results at variance with observations.

The preceding study permits us, however, to avoid these ambiguities

and gives a complete account of what happens in the various cases. In fact,

from the diagram of Figure 21.3, for instance, it follows that within a cer-

tain range of p < 0, there is a zone of absolute stability (stable focal

points). There is also a range of a conditional stability (unstable focal

points); in this latter region the phenomenon is stable in the sense that it

does not "run away," e.g., blowing fuses, but rather approaches a stationary

periodic motion.* If we consider now Point 2 of equilibrium, Figure 21.2,

the Kaufmann criterion states that the equilibrium is unstable. The above

study indicates that absolute instability, i.e., the zone of saddle points,

begins already for JpI = R and sometimes a little earlier if there is a zone

of unstable nodal points wedging in between the zone of saddle points and

other singularities. Furthermore, from diagrams of Figures 21.3, 21.4, and

21.5, it is apparent that for a given value of p < 0 the question of stabil-

ity or instability at a given static point (R,p) is also influenced by the

other two parameters L and C which appear dynamically in the process, that

is, when a transient phenomenon occurs in the circuit.

From this study it appears that the application of Liapounoff's

theorem gives a rather broad approach to the investigation of problems of

stability by taking into account both static and dynamic factors of equilib-

rium. In each particular problem one has to ascertain first which particu-

lar "cross section" of the manifold (R, p, L, C) is of importance and which

can be neglected as not having an appreciable influence on the phenomenon.

* See Chapter IV.
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CHAPTER IV

LIMIT CYCLES OF POINCARE

22. LIMIT CYCLES; DEFINITION; ANALYTICAL EXAMPLES

It was shown that in conservative systems periodic motions generally

occur around the vortex points; the phase trajectories form a continuum of

closed curves enclosing either one single vortex point or more generally, an

odd number of vortex and saddle points, the number of the former exceeding

the latter by one. In a more complicated topological picture shown in Figure

12.1 which is composed of several groups of vortex and saddle points, the con-

tinua of closed trajectories form "islands" in the phase plane limited by the

separatrices connecting the adjoining saddle points. If there is one periodic

trajectory, there exists also an infinity of others depending on the initial

conditions; by varying these continuously one obtains the continuum of trajec-

tories as long as they remain within the limits of the domain of periodicity

determined by separatrices.

We shall now consider motions of an entirely different type observed

in autonomous non-linear and non-conservative systems. Let

dx= P(x,y); = Q(x,y)
dt dt

be the differential equations of the system, and assume that there exists a

closed trajectory C in the (x,y)-plane. Assume further that there exists

also a non-closed trajectory C' represented by equations x = x(t), y = y(t)
such that either for t = + co or for t = - oc the representative point R' mov-

ing on C' approaches C. By this we mean that for any given number e > 0 one

can find a value to with the property that any point [x(t), y(t)] on C' is at

a distance e from some point on C either for t > to or for t < to . Intui-

tively this means that C' winds around C either from the inside or from the

outside like the spirals of Figure 24.1. If the closed curve C is approached

in this manner by a trajectory C' we call C a limit cycle. A limit cycle C

is called stable if it is approached by trajectories C' both from the inside

and from the outside for t = + cc; it is called unstable if it is approached

by the trajectories C' both from the inside and outside for t = - cc, and half

stable, or semi-stable, if the trajectories C' approach it from the outside

for t = + c and from the inside for t = - cc or vice versa.

Limit cycles met with in practice have the property that they are

approached not by merely one open trajectory C' but by every such trajectory

C' originating in a certain domain of the phase plane. This means also that,

whatever the initial conditions provided they are represented by points of
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the phase plane situated within a certain region, the ultimate motion ap-

proaches a definite periodic stationary motion represented by C either for

t = oo or for t = - o, independent of the initial conditions. With this prop-

erty in mind we can also say that the ultimate periodic motion on a limit

cycle does not depend on the initial conditions.

It is thus seen that a periodic motion of this kind differs radi-

cally from periodic motions of conservative systems around a vortex point in

that the closed trajectories occur always in continuous families in the lat-

ter case, whereas in the former they are isolated. By this we mean that if

C is one such closed trajectory of a limit-cycle type there is no other limit

cycle distinct from C and differing very little from it.

The question of the analytical existence of periodic motions for

non-linear and non-conservative systems will be treated in Part II. In this

chapter we shall give a qualitative geometrical theory of limit cycles which

will provide a relatively simple illustration for the various phenomena of

the limit-cycle type observed in physical problems. Andronow (18) was first

to suggest that periodic phenomena in non-linear and non-conservative systems

can be described mathematically in terms of limit cycles which thus made it

possible to establish a connection between these phenomena and the theory of

Poincare developed for entirely different purposes.

We shall now give a few examples illustrating the preceding defini-

tions.

1. Consider the following system of non-linear differential equations

dt- +  _X_ y 1 - (x2 + y2

[22.1]

dy - - x + 1- ( %2 21dy = 2 + 1 (x 2 + y2)]
dt Vx 2  2

In polar coordinates x = r cos 8, y = r sin 0, these equations become

d = +  (1 - r 2 ) d - x + -- (1 - r [) 22.2]
dt r dt r

Multiplying the first Equation [22.2] by x, the second by y, adding and not-

ing 'that xx + yy = rr we obtain

r = 1 - r2 [22.3]

Multiplying the first Equation [22.2] by y, the second by x, subtracting and

noting that yx - xy = r 2 we have

iiiI1 YIIiII

6 = 1I [22.4]



dr dr dr
Furthermore, 1 - 2 = 2(1 + r) 2(1 - r) and on integrating one gets

1+r
log r= 2t + logA

where A = 1 + r is an integration constant, ro being the initial value of1 -r o
the radius vector. Thus

2t
Ae - 1

r = [22.5]
Ae 2t + 1

For t * oo, r + 1 both from the inside (ro < 1) and from the outside (ro > 1)

of the circle r = 1. In view of the uniform rotation 0 = 1, the trajectories
are spirals approaching the circle r = 1 both from the inside and the outside

as shown in Figure 24.4. Equation [22.5] cannot be used when ro = 0. From

the inspection of the Equation [22.1] it is seen that the origin x = y = 0 is

a singular point. From the preceding definitions it is apparent that the sys-

tem [22.1] admits a stable limit cycle x2 + y2 = 1 as a stationary solution.

2. As another example consider the following system of differential

equations

dx
= - y + x(x2 + 2 1)

[22.6]
dy = x + y(x 2 

+ y 1)
dt

In polar coordinates this system becomes

S= r(r 2 - 1); = - 1 [22.7]

From the first equation we have

r = 1 [22.8]

2
where A r - 1where A = r is a constant of integration. If r0 < 1, then A < 0 andr

2

[22.81 can beowritten as

1
r = [22.9]

/1 + IAl e2t

It is seen that for t + - , r = 1. In other words the spiral trajectories

unwind from the circle r = 1 inwards. For t + o, r = 0, that is the spiral

trajectories approach the origin which is a singular point of Equations [22.6].

In this particular case the singular point is stable as can be verified from
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the equations of the first approximation. For ro > 1, we have A > 0 so that

1
r = 1 [22.10]

/1 - Ae 2 t

For t + - oo this equation gives r = 1, that is, the spiral trajectories un-

wind from the circle r = 1 outwards. From the preceding definitions it fol-

lows that the circle r = 1 in this case is an unstable limit cycle.

3. Consider now the following system*

dx 1
d = (x 2 + y2)2 (x 2 + y 2 - 1)2 + y

[22.11]
dy = 2 + yZ)2 (X2 + Y2 1)2 X= y(Z2  2) (x 2  2 2
dt

In polar coordinates we obtain

dr 21)2 dO
d- r(r2 - - 1 [22.12]

dt ' dt

Setting r2 = u we have du/dt = 2u(u - 1)2. But

du du du du
+ = 2dt

u(u- 1)2  U U - 1 (u - 1)2

and therefore we obtain upon integrating

u 1
log u - logC + 2t

u -1 u -1

That is

e -1 Ce [22.13]
u -1

Putting u - 1 = v we obtain

1 + 1) e = Ce [22.14]

We shall investigate now the behavior of trajectories in the neighborhood

r = 1 since for r = 1, dr/dt = 0. If r = 1 - e, E being a small positive

number, then v < 0, hence from [22.14] C < 0. Thus as v - O, i.e., r 1

from the inside of the circle r = 1, t 4 + c, which means that the circle

r = 1 is a stable limit cycle for the spiral trajectories inside the circle.

If, however, r = 1 + e, then v > 0, and hence C > 0. For v ) 0 (r 4 1 from

* Communicated by Professor G.D. Birkhoff.
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the outside of the circle) e2t 0, that is t - - o, which means that the

circle r = 1 is an unstable limit cycle for the outside trajectories. Hence

the system [22.11] admits a half-stable limit cycle as a stationary solution.

4. As an example showing the existence of a region of accumulation of

limit cycles (16) consider the following system of differential equations

dx 2d - y + p (x + Y2 - 1)x sin 1
dt x +y -1

[22.15]

dy - x + p(x2 + 2_ l)y sin 1
dt 1)y sin x2 + y 2 -

In polar coordinates the equations of the phase trajectories are
dr _ 1dr - pr(r - 1) sin 1 r = 1
do r

[22. 16]
dr

d- O, r = 1
dO

Thus there exists an infinity of circles in the neighborhood of r = 1 which

represent the solutions of Equations [22.16] corresponding to the zeros of

sin 1/(r2 - 1). Between two consecutive zeros, and, hence between the two

corresponding circles, the trajectories are spirals connecting two adjoining

circles; see Section 24. The value r = 1 is thus a region of accumulation of

the periodic solutions.

It is very easy to construct examples of limit cycles having all

sorts of peculiarities by the use of polar coordinates. The above examples
were obtained in this manner and the resulting equations were then trans-

formed into rectangular coordinates; hence the apparent complications. It

must be borne in mind that the unearthing of limit cycles known, or suspected,

to exist in a given system is more difficult.

23. PHYSICAL EXAMPLES

Practically all self-excited oscillatory phenomena of Mechanics

and Physics are governed by non-linear differential equations and illustrate

limit cycles. In the past, the mathematical formulation of oscillatory phe-

nomena has made use of some method of simplification. A typical simplifica-

tion is the Method of Small Motions of Dynamics. The application of this

method, as its name implies, is limited to small motions, generally studied

in the vicinity of an equilibrium point. In the numerous phenomena of self-

excitation of electronic circuits, circuits containing non-ohmic conductors

such as arcs, gaseous discharges, and the like, the ultimate stationary os-

cillation is generally limited by amplitudes which cannot be considered as

small. Likewise, in a great majority of mechanical self-excited vibrations



or oscillations the phenomenon generally stabilizes itself in a range in

which the non-linearity of the differential equations cannot be neglected.

Such "linearized" differential equations generally leave open the question of

the ultimate amplitude at which the self-excited phenomenon stabilizes itself.

Thus, for example, in the investigation of a simple linearized*

problem of the Froude's pendulum, Section 8, we reach a conclusion that under

certain assumed conditions the damping term is of the form - bq(b > 0). The

conclusion, therefore, is that the general solution of Equation [8.1] is of

the form q = o0e
bt sin (wt + a), which indicates that in the early stages of

the motion the amplitude is gradually increasing. Actually the amplitudes of

the subsequent oscillations do not increase indefinitely however, but reach a

limit when the oscillation becomes stationary. This stationary oscillation

is represented by a limit cycle. Likewise, in a thermionic generator in

which a similar condition exists initially, the amplitude of oscillation

eventually reaches a limit cycle.

A linearization of this kind, while giving an indication as to what

happens initially, does not give any information as to the final state of the

stable oscillation. In other words, it does not permit the determination of

the ultimate limit cycle towards which the initial process approaches asymp-

totically. Since limit cycles are not present in the linear systems, it is

necessary to study problems which are essentially non-linear in character.

From this preliminary survey, it appears that modern electronic

circuits involving electron tubes, gaseous discharges, and similar non-linear

conductors, offer numerous examples of the existence of limit cycles. Although

there are many examples of mechanical oscillations they have been given less

attention inasmuch as they generally appear as undesirable parasitic phenom-

ena. They occur whenever there is a so-called "closed-cycle effect," by which

a certain "cause" produces an "effect" which tends to reinforce the original

"cause," etc. The initial process is thus cumulative. However, in view of

the non-linearity of the system for larger amplitudes of oscillations, the

stable amplitude of the stationary state generally approaches that of a limit

cycle. Again, the initial conditions do not play a leading role. The final

amplitude depends only on the parameters of the system, but not on the initial

conditions.

A commonly encountered mechanism in which limit cycles exist is an

ordinary clock (19). In fact in a clock there is an oscillatory damped sys-

tem, excited by shocks twice per period from a source of external energy,

* The expression "linearization" used here simply means dropping the non-linear terms from the differ-

ential equation. A somewhat different meaning is attached to this word by Kryloff and Bogoliuboff;
see Chapter XII, Part II.
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e.g., weight or main spring, released by the escapement; the impulses so re-

leased replenish the energy lost per half cycle of the oscillatory system

and thus allow for the "closing" of the phase trajectories which then become

limit cycles; see Part IV. In fact, if a clock is wound from rest, it is im-

material whether a small or a large impulse, e.g., shaking, is employed to

start it; the ultimate operation of the clock, once it is started, is entire-

ly independent of the initial condition which has produced the starting.

Perhaps it is not too great an exaggeration to say that the princi-

pal line of endeavor of non-linear mechanics at present is a search for limit

cycles. These modern tendencies to consider the problem of self-excited os-

cillations as the problem of determining limit cycles seem to transcend even

the domain of mathematical physics proper; in fact, attempts have been made

to extend these new mathematical methods to the description of biological and

statistical phenomena as well. Thus, for instance, Van der Pol and Van der

Mark (20) gave a theory of the performance of the heart considered as a relax-

ation oscillation mechanism possessing a limit cycle. Likewise, V. Volterra

(21) in his mathematical theory on the "Struggle for Life" gave examples in

which limit cycles may exist.

24. TOPOLOGY OF TRAJECTORIES IN THE PRESENCE OF
SINGULARITIES AND LIMIT CYCLES

Recalling the definitions of the various types of limit cycles as

given in Section 22, it is seen that the trajectories in the neighborhood of

stable, unstable, and half-stable limit cycles have the form shown in Figures

24.1, 24.2, and 24.3, respectively.

Trajectories winding on (unwinding from) a limit cycle may either

arrive from infinity (go to infinity) or may originate (terminate) at singu-

lar points or other limit cycles. It will be shown that a necessary condi-

tion that a closed curve C in the phase plane be a trajectory is the existence

of at least one point singularity of a definite type inside it. The fact that

C

Figure 24.2
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the trajectories either depart or approach sin-

gularities of the focal or nodal type makes it

possible to use a rather pictorial language in

describing certain topological relationships

in the phase plane by considering these singu-

larities either as "sources" or "sinks" for

trajectories in their neighborhood. c

A stable singularity or a stable lim-

it cycle considered from this viewpoint, is a Figure 24.3

"sink" for trajectories which it approaches

asymptotically; likewise, an unstable singularity or an unstable limit cycle

appears as a "source" with respect to the trajectories from which it departs.

In this manner a number of propositions concerning these relationships become

almost self-evident.

Very frequently a trajectory may approach a limit cycle for t ) co

and approach a singular point for t + - -. Physically this means that the

motion develops from a state of rest and passes ultimately to a stationary

periodic state. This can be expressed in light of the above descriptive lan-

guage by stating that for t - - 0o the trajectory starts from a point source

and for t - + c it approaches a line sink.

In the following we shall consider focal points. There is no es-

sential difference in considering nodal points when the nature of the trajec-

tories in the neighborhood of the singularities is taken into account.

A point A on a trajectory C divides it into two half-trajectories.

If the time origin is selected when the representative point is at the point

A, these half-trajectories for t Z 0 and for t 0 describe the future and

the past history of the system. The present condition is nepresented by the

point A. If we are only interested in a physical phenomenon beginning at a

certain instant and disregard its past history, the state of the system is

then determined by the positive half-trajectory (t 0) "originating" at the

point A. Very frequently this viewpoint is useful when we deal with the im-

pulsive excitation of a dynamical system in which case the representative

point R is transferred discontinuously from one point of the phase plane to

another, say A. Disregarding what occurred during the period of discontinu-

ity, or prior to it, we can consider only the half-trajectory "originating"

at A and study the behavior of the system from that moment.

With this remark in mind we can say, for example, that to a set of

initial conditions represented by the point A in Figure 24.1 there corresponds

a half-trajectory winding onto the stable limit cycle C from the outside and

to the initial conditions represented by the point B there corresponds a
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- half-trajectory winding on C from the inside.

There may be, of course, more complicated

/ / situations when a number of other singulari-

i \ ties are present but for our immediate pur-

1 I pose it will be sufficient to consider the

/ j simple case of one singularity surrounded by
Fu/ / one, or several, limit cycles.

- < c Having in mind later applications
C,'

SCo let us consider the following special case.
co A point singularity F,, which we shall assume

Figure 24.4 to be an unstable focal point, is surrounded

by several limit cycles, represented by closed

curves shown as circles Co, C o , C1, etc., in Figure 24.4; the circles in full

lines represent the stable limit cycles and those in broken lines, the un-

stable ones. The fact that we assume that the limit cycles are circles is

not essential since we are primarily interested in the topology of trajecto-

ries in the various domains which we are now going to specify. In order to

include the half-stable limit cycles, the following terminology is convenient.

A limit cycle is inwardly or outwardly stable according to the side on which

stability exists; similarly, a limit cycle may be inwardly or outwardly un-

stable. A stable limit cycle in this terminology is one which is both in-

wardly and outwardly stable and an unstable limit cycle is both inwardly and

outwardly unstable.

We can now formulate the following theorem* given here without

proof. In a succession of concentric limit cycles considered from the center

outward, an outwardly stable limit cycle is followed by one that is inwardly

unstable and a cycle which is outwardly unstable is followed by one that is

inwardly stable. The point singularity at the center is to be considered as a

degenerate limit cycle possessing only the outward stability (or instability).

We shall consider first a few typical examples which stress the sig-

nificance of this theorem. This will enable us to derive certain conclusions

concerning more complicated cases which will be important later. One such

case arises when a point singularity being originally unstable becomes stable

or vice versa. Figure 24.4 exhibits an unstable singularity F, surrounded by

a stable limit cycle Co and a few other cycles (C0 ', C1, unstable, C 1 stable,

etc.). It is apparent that, since the state of rest FU is unstable, a spiral

This theorem is a particular case of a more general theorem formulated by I. Bendixson (5). One
can also find the proof of the proposition that two adjoining closed integral curves cannot both be
stable in a recent paper by N. Levinson and O.K. Smith (22).
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trajectory will originate at Fu and will approach C o which represents the

state of the ultimate stable stationary oscillation on the limit cycle. It

is readily seen, following this line of reasoning, that this state of sta-

tionary motion will be reached not only when the system starts from rest but

also when it starts from any arbitrary initial conditions which are repre-

sented by a point of the phase plane inside the first unstable limit cycle

C o' such as A. In this sense we can state that the ultimate motion on the

limit cycle Co is independent of the initial conditions.

It is apparent that the following stable cycle C1 cannot be reached

spontaneously by the system starting from rest since the oscillation cannot

develop beyond CO on which it becomes stationary. However, in spite of this,

the trajectories may approach the limit cycle C1 if they originate from the

initial conditions represented by the points situated in the annular region

between C O' and Cl' such as points B and D in Figure 24.4. It is thus seen

that the unstable limit cycles C O,, C 1' .. constitute a kind of divide or

"barrier" for the initial conditions from which various stable limit cycles

such as C1, C2 ... can be reached by trajectories.

We are now in a position to formulate two definitions which will be

important for the sequel.

1. A self-excitation of a system on a limit cycle Co is called soft if

it can originate spontaneously from rest.

2. A self-excitation on a limit cycle C is called hard if it requires

a certain finite disturbance, e.g., shock excitation, to transfer the initial

conditions into the annular region between two consecutive unstable limit

cycles in which C is situated.

These definitions may also be formulated in the following manner. A stable limit

cycle Co is said to induce a soft self-excitation, whenever it contains no other limit cycle and

just one singular point, an unstable singularity. In all

other cases Co is said to induce a hard self-excitation.

This condition of "hard" self-

excitation is illustrated in Figure 24.5, in / c,

which the system is in stable equilibrium l- o
when at rest. If there exists a stable lim- I

it cycle C, it follows from the theorem A

stated above that there must necessarily be

an unstable limit cycle Co' between F, and / Co

Co. Therefore the system cannot become self-

excited and reach the stable limit cycle

either from rest or from any initial conditions Figure 24.5
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co P Co

F5 \

Fu co c co Co Fs

(O) (b) (C) (d)

Figure 24.6

represented by a point A inside Co'. In fact, in the latter case, Figure

24.5, the trajectory starting from A will approach the state of rest at F,.

The stable limit cycle Co can be approached however, if a trajec.tory origi-

nates either at B or at D, which represent points of the annular region be-

tween the divides C o' and C i', that is, the system must be given initial

conditions represented by any point in this annular region.

In the following we shall be concerned with those cases in which

the topology of the phase plane undergoes changes as a result of changes of

a parameter in the differential equation. As we shall see these changes may

be of different kinds. Thus, 'for example, the singularities may undergo a

transition from stability to instability or vice versa, limit cycles may vary

in size, a stable limit cycle may coalesce with an unstable one with the dis-

appearance of both, limit cycles may shrink and coalesce with point singular-

ities modifying the nature of the latter, etc. These various changes will be

studied in later sections. In all cases, however, complicated, we shall find

that the theorem on limit cycles provides most useful information.

As an example consider the following case which we shall encounter

later. Assume that there is an unstable singularity FU surrounded by a sta-

ble limit cycle Co as shown in Figure 24.6a. A trajectory will unwind from

F, and will approach Co; this corresponds to the case of a soft self-

excitation. Assume now that, as the result of a variation of a parameter X

in the differential equation, the singularity undergoes a transition from

instability to stability and that the trajectory Co in the neighborhood of

this limit cycle varies continuously, remaining a limit cycle. Then, by the

foregoing theorem, an unstable limit cycle Co' must necessarily originate

between Co and F, as shown in Figure 24.6b. This, however, in no way affects

the stationary motion on Co, except, possibly, that there may be a slight

change in the "radius" of Co.

A further variation of the parameter X may decrease the "radius"

of Co and increase that of Co', so that the two cycles approach each other,
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as shown in Figure 24.6c, although the actual trajectory of the system con-

tinues to be Co. This is often the case in considering the non-linear char-

acteristics encountered in practice. After the coalescence of these limit

cycles a number of alternatives is possible with a continuous variation of X

in the same sense.

One possibility of frequent occurrence in physical problems is the

case in which there exist no limit cycles beyond this stage. Everything then

takes place as if the stable and the unstable limit cycles upon coalescing

destroy each other. When this situation arises, the representative point

approaches the stable focal point as shown in Figure 24.6d, so that the self-

excited process disappears gradually.

The coalescence of limit cycles with point singularities will be

investigated in Section 29. It should be mentioned at this point that the

question of coalescence of limit cycles remains relatively unexplored

theoretically.

Interesting illustrations of the above definitions and theorems

can be obtained experimentally by means of a cathode-ray oscillograph ar-

ranged to record the phase trajectories of a non-linear process.

It is recalled that the pattern traced by the luminous spot of a

cathode-ray oscillograph is due to the alternating potentials impressed on

two pairs of deflecting plates at right angles to each other. If, therefore,

one pair of plates is subjected to a voltage proportional to a dynamical var-

iable x, which may be the displacement in a mechanical oscillation or a cur-

rent in a circuit, and the other pair of plates is acted on by a voltage

proportional to the derivative x of that variable, it is clear that the lu-

minous path traced by the electronic beam on the screen will give directly

the phase trajectory of the process. There exist numerous, so-called dif-

ferentiating circuits which give an electrical differentiation of this kind.

We shall not go into a survey of these various schemes but will indicate as

an example the essential points of a scheme due to Bowshewerow (23) who was

one of the first (1935) to de-

velop the experimental technique -- 'I

for the investigation of phase

trajectories. Consider the

scheme shown in Figure 24.7 rep- L R M

resenting a thermionic generator

with an adjustable inductive

coupling LL'. The oscillating

circuit LC of the generator con-

tains a relatively small resistor Figure 24.7
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R 2 in series and a rather large resistor RI in parallel with L and C. It is
apparent first that the potential difference across R 2 represents the oscil-

lating current i and that across R i the oscillating potential V, and since

these quantities are approximately in quadrature with each other, it is ap-
parent that the oscillograph M, controlled by these potential differences is

capable of recording the phase trajectories of the process. By means of ad-

ditional details not shown in Figure 24.7, it was possible to start the phe-

nomenon from a given point (i,V) of the phase plane and also to vary the

parameter X of the process by changing the coefficient of mutual inductance

between the coils L and L'. A variable bias permits fixing the equilibrium

point at different points of the non-linear characteristic of the tube.

Oscillograms a, b, c, and d shown in Figure 24.8 represent the

various conditions of a hard self-excitation recorded in this manner. Oscil-

logram a shows the disappearance of self-excitation by removing the coupling

of the oscillator with the incident approach of the phase trajectory to a

stable focal point. Oscillogram b shows a similar process but with a small

amount of regeneration through a relatively weak coupling LL' below the crit-

ical value at which the energy input into the oscillating circuit becomes

greater than its dissipation of energy. Oscillogram c represents oscillation

on the limit cycle. With the non-linear characteristic employed it is seen
that there are two limit cycles C 2 and C1 , the former being stable and the

(a) (b)

C,

CC"

(c) (d)

Figure 24.8
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latter unstable. The black point inside C, is a stable focal point. By trans-

ferring the initial conditions to the different points of the phase plane the

stable limit cycles CI and C 2 can be reached in the manner just explained

either from the inside of these cycles or from the outside. A phase trajec-

tory approaching C 2 from the outside has been recorded on the oscillogram.

Oscillogram d shows the approach of phase trajectories to a stable limit cycle

both from the outside (Curve C') and the inside (Curve C"); the black spot in

the middle is an unstable focal point.

25. FURTHER PROPERTIES OF LIMIT CYCLES; INDICES OF POINCARE;
THEOREMS OF BENDIXSON

In the examples given in Section 22 the establishment of the ex-

istence of limit cycles was particularly simple. Unfortunately, given a non-

linear differential equation, the problem of establishing the existence of a

limit cycle, or cycles, is, generally, very difficult.

There exist criteria which rule out limit cycles in certain cases.

The method most frequently used for the establishment of the existence of

limit cycles within a certain domain is based on the theorem of Bendixson

formulated below. It is important to note, however, that Bendixson's theorem

cannot be applied to systems with more than one degree of freedom; further-

more, even in such systems its application is frequently handicapped by the

difficulty of determining the domain to which it can be applied. Poincar6

has given a series of necessary criteria for the existence of limit cycles,

based on the theory of indices associated with closed curves.

The whole situation when considered from the point of view of de-

termining limit cycles can be best described in the words taken from the

"Theory of Oscillations" by Andronow and Chaikin:

"The present status of the theory establishing the

existence of limit cycles can be best compared to the game of

chess. There exists no theory by means of which a game can be

won. There do exist, however, alternatives which enable a

skilled partner to win a game starting from a given configuration

on the chess board."

We shall review now the three principal methods available.

A. Indices of Poincare, B. Negative criterion of non-existence of closed

trajectories of Bendixson, C. A second theorem of Bendixson. There exists

also a fourth method of the curve of contacts due to Poincar6. We shall not

go into this subject here but shall mention it in a later chapter where the

use of the curve of contacts will be helpful.
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y' A. INDICES OF POINCARE

Consider a closed curve C as

X shown in Figure 25.1 in a vector field F.*

c \Assume an arbitrary positive sense of rota-

tion, say clockwise, and consider the mo-

M tion of the point R on C in this positive

x' direction. Let (x',y') be a frame of

reference attached to R, the directions of

which remain parallel to the axes x, y of a

fixed coordinate system during the motion

Figure 25.1 of R on C. If the vector RM with R as

origin is drawn, so as to represent the

vector of the field at R, this vector RM will turn around R in the (x',y')-

system as the point R moves on C, When the circuit C is completed, the vec-

tor RAI will resume its original position in the (x',y')-system.

Poincar6 calls the "index j" of a closed curve with respect to a vector field

the algebraic number of complete revolutions of RM when R completes one circuit C. The

index may be equal to zero, which means that RM executes only an oscillation

in the (x',y')-system but not a complete rotation. By the index of a singu-

larity is meant the index of a closed curve surrounding the singularity and

lying in a vector field determined by the phase trajectories.

From this definition it follows that the index of a closed trajec-

tory enclosing a vortex, a nodal, or a focal point is + 1, Figure 25.2a, b,

and c, whereas that of a trajectory surrounding a saddle point is - 1, Figure

25.2d.
Poincar6 has established a series of theorems which are given here

without proof (2). Some of these theorems are obvious from geometrical

considerations.

C C

C
N

V F

(a) (b) (c) (d)

Figure 25.2

For such a field the line integral Fda over a closed curve is zero.
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1. The index of a closed curve not containing singularities is zero.

2. The index of a closed curve containing several singularities is

equal to the algebraic sum of their indices.

3. The index of a closed curve which is a phase trajectory is

always + 1.

4. The index of a closed curve, with respect to which the field vec-

tors are directed either inwards or outwards at all points, is always + 1.

These theorems lead to the following conclusions with regard to

closed phase trajectories.

1. A closed trajectory contains in its interior at least one singular-

ity the index of which is + 1.

2. A closed trajectory may contain several singularities in which case

the algebraic sum of their indices is + 1.

By virtue of the first conclusion, limit cycles may contain in

their interior nodal or focal points, but not saddle points. By the second

conclusion the number of enclosed singularities must always be odd, the num-

ber of singularities with index + 1 must exceed the number of saddle points

by one unit. This theorem has already been established directly, see Section

12, from topological considerations.

B. FIRST THEOREM OF BENDIXSON (THE NEGATIVE CRITERION)

The first theorem of Bendixson establishes a condition for the

non-existence of closed trajectories and, hence, for the impossibility of

periodic motions.

Let the motion in the phase plane be given by the equations

x = P(x,y); y = Q(x, y) [25.1]

The theorem of Bendixson states: If the expression OP/Ox + OQ/Oy does not change

its sign within a domain D of the phase plane, no periodic motions can exist in that domain.

Consider a closed circuit in D and apply Gauss's Theorem

(Pdy - Q dx) ff= + dx dy [25.2

with respect to this circuit. If one assumes that the circuit is a phase

trajectory satisfying [25.1], the line integral can be written f(xydt -j ydt)

which is equal to zero. As to the double integral, it can be zero only if,

within the area limited by the closed circuit, the integrand (OP/Ox + OQ/ay)

changes its sign. This is contrary to the assumption; hence, the closed
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curve cannot be a phase trajectory which implies that no periodic motion can

exist in D.

One can also state a series of additional criteria based on the

negation of the theorems resulting from the theory of indices.

1. No periodic motions and, hence, no limit cycles can exist in a sys-

tem not having singularities.

2. If a system has just one singularity and if its index is not + 1,

periodic motions are impossible.

3. In a system with several singularities the algebraic sum of whose

indices is different from + 1, periodic motions on closed curves enclosing

all these singularities are impossible.

4. In a system with just one singularity having the index + 1, which

is approached by trajectories going to infinity, periodic motions are

impossible.

C. SECOND THEOREM OF BENDIXSON (5)

Let x(t), y(t) be the parametric equations of a half-trajectory C

which remains for t 4 + co inside a finite domain D without approaching any

singularity. The second theorem of Bendixson asserts that only two cases

are then possible.

1. Either C is itself a closed trajectory, or

2. C approaches asymptotically a closed trajectory Co.

If, assuming for instance that there is only one singularity in-

side a closed curve C1, one succeeds in determining a domain D limited by

two closed curves C, and C2, as shown in Figure 25.3, within which the half-

trajectory is confined and has no singularities either in D or on its bound-

aries, then the theorem asserts that there exists at least one stable limit

cycle in D.

An intuitive interpretation of this theo-

c2 rem on the basis of singularities and limit cycles

C22 considered as "sources" and "sinks" is frequently

C useful. As an example consider Equations [22.3] and

[22.4]. For r < 1, dr/dO > 0; for r > 1, dr/dO < 0.

Choosing as the domain D an annular region limited

by two concentric circles r, = 1/2 and r2 = 3/2, for

Sf example, drawn from the origin as center, one read-

Figure 25.3 ily sees that D satisfies the condition of Bendixson
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since no singularities exist either in D or on its boundaries. Hence, there

exists at least one limit cycle. In this particular case a direct proof of

existence of a limit cycle is very simple, as appears from [22.51.

In applying the second theorem of Bendixson a difficulty often en-

countered consists in finding the appropriate domain D which would contain an

entire half-trajectory and exclude the singularities. As an example of such

a case, consider the Van der Pol equation

S- U(1 - x2 )i + x = 0

which, as is known, has a periodic solution. More specifically, for p << 1,

this equation admits a closed trajectory differing very little from a circle

of radius r = 2.

If one attempts to apply the Bendixson theorem to a domain D limited

by ri = 1 and r2 = 3, one easily finds that the theorem fails to indicate that

the trajectories cannot leave the domain D by crossing the boundary of the

circle.

If, however, one succeeds in establishing a domain D for which the

conditions specified by Bendixson's theorem hold, then one is certain that at

least one periodic solution exists. Thus, for example, in a later chapter we

shall encounter the system

dx
d - ay + x(1 - r2)

dt

[25.4]

dy A + ax + y(1 - r2)
dt

where A is a constant and r2 = x 2 + y2. It is apparent that, for a suffi-

ciently large r2, the trajectories are directed inwards. Furthermore, by
transferring the origin to the singular point by a change of variables z =

zo + f, y = Yo + n, the system [25.4] is reduced to that of the form

-- - a, +- .
dt

[25.51
do - a4 + 7r + ...
dt

It is thus seen that the origin is an unstable focal point and since no other

singularities exist, the Bendixson theorem shows that there exists a stable

periodic solution contained in a finite domain.

26. PARALLEL OPERATION OF SERIES GENERATORS

As an example of the application of the Bendixson criterion of non-

existence of closed trajectories consider two series generators connected in
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(i ) Field parallel with respect to the exter-

Winding nal circuit R, as shown in Figure

26.1. Selecting as the positive

002) direction for the currents il and

i2 the direction in which they

contribute to the external load

r,i2  and designating the characteris-

tics of series generators by e =

M(i), one obtains, by Kirchhoff's

i i, +i laws, the following two differen-

Figure 26.1 tial equations applied to the cir-

cuits (il,i) and (i21,).

b(ig) - (r + R)i - Ri 2 - L d = 0

[26.1]

?(i 2) - (r + R)i 2 - Ri 1 - L di 2 = 0
dt

Dividing these equations, one finds

di 2 _ (i 2) - (r + R)i 2 - Ril
dil (il) - (r + R)il - Ri 2  [26.2]

The variables iI and i2 determine the trajectories in the phase plane. The

application of the first theorem of Bendixson gives

OP O(i ) - (r + R); i - (i 2 ) - (r + R) [26.3]
'i 1 Oi2 2

If the condition of self-excitation is fulfilled, one has always Oi(i) -

(r + R) > 0;* hence, no periodic motions are possible. The condition of

equilibrium is obtained by setting the numerator and denominator in Equation

[26.2] equal to zero and by finding the points of intersection of the result-

ing curves in the (i1,i2)-plane. One can also investigate the system of two

linear equations

dit= (il) - (r + R)il - Ri2

[26.4]

di dt L[(i)- (r + R)i - Ri]

* In fact, this inequality means that the initial supply of energy must be greater than its dissipa-
tion, see Section 21.
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by forming the equations of the first approximation, that is by developing

0(i) in Taylor's series and neglecting the terms of higher orders. Writing
(d-(i)) = (?i)i=o = p, one has

di

(p - r - R)i 1 - L d Ri 2 = 0

[26.51

- Ril + (p - r - R)i 2  Ld 0

Putting 6 = d/dt, this can be written as

(p - r - R - L6) i - Ri 2 = 0

[26.6]
- Ril + (p - r - R - L6)i 2 = 0

The system [26.6] admits solutions other than the trivial ones il = i 2 = 0,

if the determinant is zero.

p-r-R-L6 -R
- R p - r - R - L6

That is, p - r - R - L6 = +R; whence the roots of the characteristic equa-

tion are

61= p - (r + 2R)]; 6, = (p - r) [26.8]

In practice generally p - r > 0; thus (i,) Field

62 > 0. As regards 6,, it may be ' ding

either positive or negative. In the

first case there is an unstable nodal

point and in the second, a saddle

point. Thus, for the assumed condi-

tions, that is, when i1 and i 2 add up r,' 2

with respect to the external circuit, R

the process is unstable and therefore ...

cannot exist in a steady state. In i,,

fact, it is well known that a paral- Figure 26.2
lel connection of two series machines

leads to an unstable parasitic performance in which one machine generates en-

ergy and the other absorbs it so that no energy flows into the external cir-

cuit. If the field connections are crossed as shown in Figure 26.2, instead
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of Equation [26.1] one has

0 (i 1) - (r + R)i 2 - Ri 1 - L di2 = O
dt

[26.9]

(i2) - (r + R)i - Ri 2 - L d = 0

The roots of the characteristic equation are

6 = p - (r + 2R) ; 62 = ( + r) [26.10]

If p < r + 2R, both roots are real and negative, which corresponds to a stable

nodal point-and, hence, to equilibrium. The machines have a stable perfor-

mance, delivering energy into the external circuit. If p > r + 2R, there is

a saddle point and, hence, a loss of stability. The threshold condition p =

r + 2R is, thus, a branch point of equilibrium corresponding to the transition

from a stable nodal point to a saddle point, which is in accordance with the

sequence of the zones of singularities shown in Figure 18.1.

27. STABILITY OF PERIODIC MOTION

We shall now investigate the problem of stability of periodic mo-

tion, a question which was left open in Chapter III. For this purpose a few

additional theorems will be useful.

Let

dx = P(x,y) and dy = Q(x,y) [27.1]
dt dt

be the differential equations of a dynamical system. Having in mind the rep-

resentation of motion of a system with one degree of freedom in the phase

plane we shall limit the number of these equations to two. The argument ap-

plies to any number of such equations.

Assume that we know a non-constant periodic solution of [27.1]

x, = 0(t); y, = 0(t) [27.2]

We shall be interested in the properties of a neighboring perturbed solution

x = x 1 + ; y = yl + 7 [27.5]

where (t) and n(t) are the functions determining the perturbation. It will

be assumed that the quantities I11 and i7l are sufficiently small so that we

may neglect 2, )2, 3s,.... Substituting the expressions [27.3] into the

differential equations and expanding the functions in a Taylor series in the



neighborhood of x1 and yl, one obtains the variational equations (3)

d = p,(xl,y) + P,(xl,y,)?

[27.4]

dt7
d= QX(xi,Y 1)4 + Qy(xl,yl)7

This is a system of linear equations of the type

d = a(t) + b(t),
dt

[27.5]
S= c(t) + d(t)

dt

where a(t), - , d(t) are periodic functions of t with a common period T.

It is known (24) that a system of the type [27.5] admits a funda-

mental system of solutions of the form

j = e' f 1l(t); 71 = e h2tf12(t)

[27.6]

2 = e htf 21(t); 7 2 = eh2tf 2 2(t)

where f11, * ", f 22 are periodic functions of time with the period T, and h1
and h2 are certain constants, real or complex, which are determined only to

integral multiples of 27riT. These constants are called the characteristic

exponents of the system.

The characteristic exponents satisfy the relation

h + h 2 = (a + d) dt [27.7]

that is, the sum of the characteristic exponents is the average of the sum of

the diagonal coefficients of [27.5] taken over the period T. This can be

proved as follows. Substituting the expressions [27.6] into the equations

[27.5] and solving for a and d we obtain

a = 7  d = 12 - 21 [27.8]
12 -271 21772 - 12771

The denominator of these expressions, upon substitution of the values for

41, " - , 12 obtained from [27.6], becomes

1-2 - 21 [h l+h2]t1[f 2 f12 f21 e[hl [27+]t

where 6 is a periodic function with period T. Adding the expressions [27.8]
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one obtains after simple calculations

(a + d) =- + (h1 + h 2 )

Averaging this expression over the period T one has

T T T.

h + h 2  (h1 + h2)dt = -f (a + d)dt - 1f -dt
0 0 0

Since the last term on the right side of this expression has period T and

hence vanishes, one obtains the expression [27.7].

It should be noted further that if the system [27.5] admits a

periodic solution with period T at least one of the characteristic exponents

is zero (3). For suppose (t) = c 1 41 (t) + c2 42 (t); 7(t) = c1 1 (t) + c 2 772(t)

is periodic and not identically equal to zero, that is, 4(t + T) = 4(t);

n(t + T) = 7(t). From [27.6] one obtains easily

hlt h2 t
c (e - 1) 1 c2 (e h- 1)42 = 0

[27.10]
hlt h2 t

cl(e - 1) 71 + c 2 (e - 1) 72 = 0

Since c1 and c. cannot vanish simultaneously and since the solutions (41, 71)

and (42, 72) are assumed to be linearly independent, the relations [27.10] im-

ply that either e 2t = 1 or e h = 1. Thus, in the first case, we have h 2 =
0; in the second, hI = 0.

We now assert that the system [27.4] has a non-trivial periodic

solution, and that one of its characteristic exponents is zero. By differ-

entiating [27.1] we obtain

d2x dx dydt 2 = Px(x,Y) + P,(x,Y) dt

[27.11]
d2y dx dy
dt 2 Q- x(x,y)dt + Q(x,y) dt

Comparing with [27.4] it is seen that the periodic functions dxl/dt and

dyl/dt satisfy the latter system. Moreover, the solution dxl/dt, dyl/dt is

a non-trivial solution of [27.4] since x1 (t) and y1 (t) are not constant.

Knowing that one of the characteristic exponents, say h1 , is zero, we can

determine the second one from [27.7]

T

h 2 = h = - fP(xl,y) + Qy(xl,y 1 ) dt [27.12]
0
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Following a procedure similar to that used in the discussion of the

stability of equilibrium it can be shown that the motion defined by the func-

tions x1 (t), y1 (t) is stable if h < 0 and unstable if h > 0. The proof is

more complicated than in the case of stability of equilibrium, owing to the

fact that one of the characteristic exponents is bound to vanish. We shall

omit the proof. The reader will recall that in'the case of stability of

equilibrium, Chapter III, the real parts of both roots of the characteristic

equation must be negative in order to ensure the stability. Here, however,

the stability depends on the sign of the real part of the non-vanishing char-

acteristic exponent. A few examples below give an illustration of the appli-

cation of Equation [27.12].

1. The Van der Pol equation x - p(1 - x2)x + x = 0 is known to possess

a periodic solution in the neighborhood of functions x0 = 2 cos t, yo = 
=

- 2 sin t, when the parameter p is very small. Thus,

x, = 2cosvt + wo(p,t); y, = - 2 sin v t + w 2(p,t)

where v = 2r/T ; 1, T ; 2 , and wo(p, t), w 2 (p, t) are functions approaching

zero uniformly in t when p - 0. This gives P,(x,,y1 ) = 0; Q,(x1,yl )
p(1 - x,2) = P[1 - 4 cos 2 Vt + w 3(p,t)] and by [27.12]

T

T f= 1 - 4csvt + (p,,t) dt = - p 1 + 04(B)

Since w 4(p) - 0, h < 0 which proves that the periodic motion in the neigh-

borhood of (xo, o) is stable, a well-known fact.

2. As further examples we shall consider the three systems [22.1],

[22.6], and [22.11] of non-linear differential equations investigated in

Section 22. It was shown that these systems admit limit cycles r = 1, stable

for the system [22.1], unstable for [22.6], and half stable for [22.11]. We

shall establish here the condition of stability by means of Equation [27.12].

a. In case of the system [22.1] we have

PX Y 2 1 - (x2 + 2 2x2

(X2 + y)2 2y  + 2y

2 2
Q x 2  [1 (+y] 2Y 2

(X2 + Y2)2
2
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Since this system admits a periodic solution x, = cos t, yl = - sin t, we

have

P(x, y1 ) = - 2 cos 2t; Q,(x 1 , y) =- 2 sin 2 t

and

h = (sint + cos t)dt = - 2

which shows that the limit cycle r = 1 is stable.

b. For the system [22.6] we obtain

Px = 3 2 +  _ 1; Qy = 3y 2 + 1

the generating solutions being the same as above. Whence,

2r

h = 2 o(4 - 2)dt = 2 > 0

and the limit cycle r = 1 is unstable.

It is important to note that one is able to draw conclusions as to stability only when

h * 0. Should h vanish the preceding argument based on the use of [27.6] is

not applicable.

c. As an illustration, we shall consider two such cases: first,

the system [22.11], second the harmonic case.

For the system [22.11] one finds

Pz(xl,yl) + Qv(xl,y 1 ) = 0

so that h = 0. It was noted previously that the limit cycle is half stable.

As regards the harmonic oscillator, whose non-dimensional equation

is

x+x=0

the corresponding first-order system is

dx dy

dt dt

It is observed that Px = Q, E 0. The motion of a harmonic oscillator is

neither stable nor unstable but rather indifferent in the sense that if a

perturbation results in a new amplitude of motion this amplitude will be

maintained without any tendency either to approach to, or to depart from,

the motion with the old amplitude.



CHAPTER V

BIFURCATION THEORY (POINCARE)

28. INTRODUCTORY REMARKS

It has been shown in Section 13, 14, and 15 that, for certain crit-

ical or bifurcation values of a parameter in a differential equation, radical

changes occur in the qualitative aspect of its trajectories. In this chapter

we propose to go further into this subject by considering the important par-

ticular case in which a singularity undergoes a transition from stability to

instability, or vice versa. There exists a number of more complicated cases

in the theory of bifurcation such as bifurcation of limit cycles from separa-

trices, disintegration of a limit cycle into a number of cycles, and so on.

We shall not go into the investigation of these complicated cases but will

confine our attention to the above specified case. A preliminary qualitative

investigation of the subject of this chapter has been made already at the end

of Section 24 where the intuitive concepts of "sources" and "sinks" in the

phase plane were applied; here we shall follow the analytical method of

Poincar6.

In practice, the problems are very frequently simplified or "lin-

earized" from the start so that some limited conclusions regarding stability

may be reached. Unfortunately, such linearized equations do not give a full

account of the observed phenomena. Thus under certain conditions the normal

behavior of a dynamical system, e.g., an airplane, which is predictable on

the basis of a "linearized" theory suddenly gives way to self-excited para-

sitic oscillations of large amplitudes, the "flutter" phenomenon, frequently

causing destructive effects. One recognizes in these effects a typical case

of the so-called "hard" self-excitation which has now been completely ex-

plained by means of the theory of bifurcation as applied to non-linear elec-

tronic circuits.

We are now entering the domain of non-linear mechanics proper, and

the equations of the first approximations which we have been using in Chapter

III in connection with the problem of the stability of equilibrium cease to

be applicable. In other words, it is impossible to obtain the results of

this chapter by linearizing the differential equations. The present topic

leads to results of great practical interest in connection with the problem

of self-excitation of dynamical systems in general. More specifically, all

problems such as self-excitation of thermionic circuits or of electrodynamical

systems, "flutter" of aircraft wings, and similar phenomena fall within the

scope of this theory.

ON1,111 ,,, 1 d ,I I I I , A 191111 loll



29. TRANSITION OF SINGULARITIES. BRANCH POINTS OF LIMIT CYCLES

Consider the general form of the dynamical equations and assume

that the coefficients a, b, c, and d of the linear terms as well as the non-

linear terms P 2(x,y) and Q 2(x,y) are now functions of a parameter X. We as-

sume further that the origin (0,0) is a focal point for all values of X under

consideration.

It was seen in Section 18 that, for a focal point, the roots of the

characteristic equation are conjugate complex

S1 = al(X) + ib,(X)
[29.1]

S 2 = al(X) - ib 1(X)

By means of the transformations [18.16] and [18.1*5] the general dynamical

system can be written as

x = al(X)x - bl(X)y + P2(x,y,k)
[29.2]

= bl(X)x + al(X)y + Q2(x,y,X)

where P 2 and Q 2 are power series in x and y beginning at least with the terms

of the second degree in x and y; compare with [20.9].

The focal point is stable or unstable according as a1 < 0 or a1 > 0,

as was explained in Section 19. Multiplying the first Equation [29.2] by x,

the second by y, adding the two equations, and transforming the resultant

equations into polar coordinates, one obtains the equation

2 dt(r2

Multiplying the first Equation [29.2] by y, the second by x, and subtracting

the former from the latter, one finds, similarly

dt - [b()r 2+ Q2ros - P2 r sinO0 [29.4]

Dividing Equation [29.3] by [29.4] one obtains the equation of the trajec-

tories

dr a l ( ) r + P2 COS O + Q2 sinO [29.5]
dO b ()r + Q2cos0 - P 2 sin0

It is to be noted that for a sufficiently small r, and hence for small Ixl

and lyl, the sign of dO/dt is determined by that of bl(X). Equation [29.51
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reduces to the form

dr _ [a1(X) P2cos + Q2sinO][ P sinO - Q2 cosO
S= FI r + 1+ +

dO - b(X) b() [1 b(X) r

+ (P2sin O - Q2COs) 2  ] [29.6]
bl(X)r

This expression can be written as a power series in r

dr = Rl(8,)r + R,(6,)r 2 + R 3 (O8, )r3 +  [29.7]

where

R= al()
bj(X)

= alt P 2 sin 0 - Qcos) + P2 cos0 + Q2 sin 0
R2 br 2

R3 a (P 2 sin - Q 2cOs 0 ) + a (P 2 sine - Q2 COSO ) 2  [29.8]
3 b2 3 b 3  r

2

+ P 2 cos + Q2 sin 0 (P 2 cos + Q2 sin 8) (P2 sin - Q2 COS 0)
+ r + b 2 4

Since it is desirable to investigate the transition from stable fo-

cal points to the unstable ones, the branch BC of the circuit shown in Figure

18.1 must be followed; in this case q * 0. In fact, when passing from stable

focal points to unstable ones the real part of the complex roots changes its

sign but the imaginary part does not. In other words bl(X) in Equations

[29.2] does not change its sign for hX < A < A2 corresponding to the branch

BC in Figure 18.1. The series [29.7] converges, therefore, for all values of

A in the interval (AX, X2) provided r < p, where p is a small fixed number not

depending on either A or 0. From [29.8] it is observed that R 1 (O,X) =

a1 (A)/b,() does not depend on 0 whereas all other coefficients Rk(O,A) are

periodic functions of 0. The function r = f(O,r 0,X) can be developed in a

power series in terms of ro converging for all values of 0, for A1 < A < A2,

and for r 0 < p. Thus

r = f(0, ro,,) = r 0ou(O,A) + r2u 2 (O, ) + ru(,A)+ [29.9]

Substituting this solution into [29.7] one obtains the following set of
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recurrent differential equations determining the functions uk (0,,)

dul
d = uR,(O,X)

d = u 2 R 1 (O, ) + u1R 2 (e,)
do1 [29.10]

du3  u3 RI(0, ) + 2U1 U2R 2 (O, 0) + u3R3(0, )

Since by assumption ro = f(O, ro,X) one finds from Equation [29.9]

u1 (O,X) = 1; uk(0,X) = 0 [29.11]

for k = 2, 3, • * *. These initial conditions, in conjunction with Equations

[29.10] determine the functions uk(O,A). The first equation gives

dul al(X) de
u - bl(k)

and, on integrating,

a(X)

U1 (O,X) = e bl() [29.12]

Let ro be a small positive number. Since the sign of dO/dt does not change

for small values of r, it is apparent that the trajectory originating at the

point (r = ro, 0 = 0) is a limit cycle if, and only if

S(ro,0) = 0 [29.13]

where

(ro, X) =_ f(27r, ro, k) - f(0, r o ,X) = f(27r,ro,A) - r o

In this expression ro designates the radius vector of the limit cycle in the

neighborhood of the r-axis. We may use the general expression O(r,k) to des-

ignate the same function in which r is not necessarily ro. We have

h(ro,x) = al(A)r o + aG2 ()r 2 + (A)r 3 r+ [29.14]

where
a,(A) 2r

aCt() = ul(27r,X) - 1 = e b,()

[29.15]

ak(X) = Uk(27r, ), k = 2, 3, • •
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We now consider a fixed value oX of the parameter X and distinguish

two cases:

1. al(X o) # 0. This means that the stability conditions of the focal

point do not change when A passes through the value o0 . By the first Equa-

tion [29.15] we have a1(Ao) # 0 so that the coefficient of ro in the expan-

sion [29.14] does not vanish for A = Ao. Hence, aside from the "trivial"

solution ro = 0, Equation [29.14] has no real solution in ro and A when ro
and IA - A 1 are sufficiently small. This means that a sufficiently small neigh-

borhood of the singular point remains free of limit cycles when X varies in a small interval

around hX0

2. a(AXo) = 0. By [29.15] this implies that a 1 (Xo) = 0. Furthermore

it can be shown that a2(Ao ) is also equal to zero. The proof of this state-

ment is omitted here. Let us now assume that

a. a1 (X o) * 0;

b. a 3( 0X) # 0

where al'(Xo ) designates the value of the derivative da,(X)/dX at the point

X = A o. Thus the singularity changes from a stable focal point to an un-

stable one or vice versa. We will show now that, at the point X = Ao at

which the stability of the singular point changes, there appears a limit

cycle or cycles. Everything occurs as if the phenomenon were developing ac-

cording to the following scheme:

,Unstable singularity
Stable singularity Stable limit cycle

SStable limit cycle

from which Poincar6's term "bifurcation" appears justified in usage.

In order to show this we can best proceed geometrically considering

the (ro,A)-plane. It is clear that in Case 1 the variation of the parameter

X does not have any effect on ro since it remains identically equal to zero.

In Case 2, however, the situation is different inasmuch as the curve O(ros,) =

0 in the neighborhood of the point ro = 0; X = Xo consists now of two branches:

a straight line ro = 0 and the curve

0(roh) = a1 (X) + a2(X)r o + a3 0()r2 + . = 0 [29.16]

Expanding the functions a(A) and a 2(A) in Taylor's series in the

neighborhood of A = A0 we obtain:

0(ro0 ,) = (X - Xo);(AXo) + (A - Xo) ca( 0 )ro + a 3 ( 0 )r02 + . [29.17]
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where a(AXo ) and a2(X0 ) designate the values of da(AX)/dX and da 2(k)/dk for

X = Xo. Since a(AXo) * 0 it follows that al(AXo) 0. If one now assumes

that the first and the third terms on the right side of [29.17] are of the

first order, the second term is of the order 3/2 and can be neglected. Equa-

tion [29.17] then becomes

(X - XO)al(AXo) + a 3 ro = 0

whence

r2 = - - X0 [29.18]
a
3

where

o =al(ko)C = a.(b) (X 27r *0

Equation [29.18] shows that (X - Xo ) must have a sign opposite to

that of C/a8 since ro is to be real.

We can now distinguish four typical cases: 1. c > 0, a 3 > 0;

2. c > 0, a s < 0; 3. c < 0, a s > 0; and 4. c < 0, as < 0.

It is to be noted first that c = a(AXo) > 0 means that for the in-

creasing values of the parameter A the real parts of the characteristic roots

change from negative to positive for X X0. Hence, the focal point (X 1 Xo)

originally stable becomes unstable for XA o. For c < 0 the focal point

(X S Ao) originally unstable becomes stable for AX X0.

We proceed now to examine the above four cases.

1. From [29.18] it is seen that r0 is real, i.e., limit cycles may

exist, only for X - Ko < 0. The region X > oX is free of limit cycles-; see

Figure 29.1a. In the region X - Ko < 0, in which limit cycles exist, the

focal points are stable. Hence, the limit cycles in that region are neces-

sarily unstable as follows from the topological considerations of Section 24.

2. Equation [29.18] shows that the limit cycles exist only for X Ao

and the region X - Xo 1 0 is free of limit cycles; see Figure 29.1b. This

represents the commonly encountered case of a soft self-excitation when, for

a gradually increasing value of the parameter A, the self-excitation sets in

for X A. The limit cycles in this case are manifestly stable since the

singularity is unstable.

3. By a similar argument one finds that the limit cycles exist for

A k o; see Figure 29.1c. They are unstable since the singularity is stable

in that region.

4. In this case the limit cycles exist only for A Ao and are stable;

see Figure 29.1d.



(a) (b)

ro  ro
Limit Cycle Limit Cycle

,(r,) > 0 (ro, X) 0

S (ro,x) 0 (rx) >0

S 0  0 (
(c) (d)

Figure 29.1

The question of stability of limit cycles can be ascertained also

by means of the theorem of Poincar6 given in Section 13. Although the ap-

plication of that theorem was made in Section 13 in connection with the ques-

tion of the stability of equilibrium it can be also applied in this case as

will be shown.

It is apparent that the curves of Figure 29.1 represent Equation

[29.171. In the neighborhood of (X = ko, r = ro) we can write

0(r,Xh) = (X - ~o)a'(Xo) + (X - Xo) a'(Xo)r + C03 (Xo)r
2 +

Subtracting (ro,) as given by [29.17] from 0(r,X) we have

X(r,) - 0 (ro,X) = 0(r,X)

or

0(r,X) = (X - Xo)a2'(Xo)(r - ro) + ( 0)(r- ro2) [29.19]

Recalling that ro2 and (X - ko) were assumed to be of the first order, it

follows that, in the neighborhood of r, r2 - r02 will be of the same order

as X - A, and, hence, the first term in the above expansion will be of the

order 3/2. Neglecting this term and also terms of higher order we obtain:

0(r,Ao) = ca3 (,o)(r 2 - r0
2)

-- 111 1

[29.20]
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We propose now to extend the applica-

tion of the theorem of Poincar6 in

c (2,,A) connection with the question of sta-

bility of limit cycles. As an ex-

ample take the second case: c > 0;

r ro r2a3 < 0. It will be shown later that

this case is of particular interest

f (2,r, r., in applications. From [29.20] it

follows that 0(r,X) > 0 for r < ro.

Hence, the region in which 4(r,X) > 0

lies below the curve 0(ro,x) = 0.

Figure 29.2 Since t(ro,) = roo(ro,,) and ro is

a non-vanishing positive quantity in

the region in which the limit cycles exist, it is apparent that i(r,X) > 0

for r < ro and 0(r,A) < 0 for r > r0 . The theorem of Poincar6 states that

the curve O(ro,A) is then a locus of stable points. In order to see the ap-

plication of the theorem in this case, it is to be noted from [29.13] that,

in general, for r * ro, 0(r,X) = f(2nr,X) - r, where r is the initial value

of the radius vector and f(2nr,X) is the value of the radius vector after

one complete rotation, 0 = 27r, of the representative point on the spiral tra-

jectory. Figure 29.2 illustrates this situation for two values of r, i.e.,

ri < r o and r 2 > r o .

For r = ro the trajectory is closed, that is, a limit cycle. Since

for r1 < ro, 0(r 1,) > 0, it follows that f(2n,r1,X) > r,, that is, the spiral

issuing from the point r, after one turn approaches the limit cycle C as

shown. For r2 > ro, ?P(r 2,X) < 0, that is, f(27r,r 2,X) < r2, which means that

the spiral trajectory issuing from a point r 2 , external with respect to the

limit cycle, approaches it after one turn. This characterizes a stable limit

cycle.

It is worth mentioning once more that the existence of limit cycles

ascertained by the more detailed study made in this section was possible only

by considering the non-linear terms. The equations of the first approxima-

tions which were sufficient for analyzing the conditions of the equilibrium

of the system are incapable of giving any information concerning the exist-

ence of limit cycles, whose determination depends on the curvature of the

characteristics inasmuch as the coefficient a 3(A) is related to the curvature

as can be easily ascertained.
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30. SELF-EXCITATION OF THERMIONIC GENERATORS

Although this subject has been considered to some extent at the end

of the preceding section, we propose to investigate it in more detail by in-

troducing certain analytical approximations for the characteristics of the

non-linear conductor, the electron tube.

Consider the circuit shown in Figure

30.1 representing a commonly used type of therm-

ionic generator with an inductive grid coupling.

The differential equation of the circuit is

di 1 " dIa R
L + Ri + CJfidt = dt [30.1]dt dt

0

in the usual notation; the coefficient A of mu- Figure 30.1

tual inductance between the anode and grid cir-

cuits will be the parameter of the preceding theory. Ia is the anode current.

Let us assume the following expression for Ia considered as a func-

tion of the grid voltage V,

Ia = Io+ SVg + S2 V
2 + S 3Vg

3 + . [30.2]

where S 1, S2, S 3 ,* .. are certain numerical coefficients determined so as to

fit the function Ia = f(V,) to the experimental curve. For the alternating

performance of the circuit the term Io is clearly of no interest and can be

dropped since it amounts to a shift of the origin of coordinates to this

point. If the characteristic were perfectly symmetrical with respect to the

origin, only the odd powers would be present. In order to take into account

a slight asymmetry we shall retain the term S2V 
2 and shall limit the power

series to the cubic term. The latter, as will be shown, is essential for

what follows. Under these assumptions

Ia = SVg + S2 Vg
2 + S 3Vg

3  
[30.3]

This expression for the anode current is inconvenient, however, since the

coefficients S1, S ,, ..* have different physical dimensions. In order to

avoid this it is convenient to introduce a dimensionless variable v = Vg/V,

where V, is the grid voltage beyond which the anode current I, does not

change appreciably so that in an idealized case we can assume that it does

not change. Putting S, = #i, S 2V, = 71, and S3 V,2 = 61' where .z, y1 , 61' have



now the dimension of the "transconductance," [30.3] becomes

Ia = V,(13V + v 1v2 + 6>1 ) [30.4]

From the experimental curves of electron tubes it is observed that,
for small values of Vg, and hence of v, the approximation la = V,(i 1v + v1v

2 )
is sufficiently accurate. During the process of self-excitation the oscilla-

tions of the grid potential Vg may be considerable so that the third term

6;v
3 is justified. It is also noted that the coefficient 6i is generally

negative since the characteristic exhibits an inflection point.

Putting 6, = - 61 we obtain the following expression for the

characteristic

Ia = Vs(fI 1 v + Y1v
2 

_ 61 V
3 ) [30.5]

in which P, y1 , and 61 are positive. Introducing the "dimensionless voltage"
v = V,/V, in the other terms one gets

1 i .. 1 div- fi dt; = Cr v = [30.6]
CV, C V8 CV, dt

Differentiating Equation [30.5] one obtains

dla dla dv _

dt d, dv = Vs(,8 1 + 2y1v - 361v) 2 [30.7]

Substituting this value into [30.1] we get

LCV + [RC - X(,8 1 + 2y,1v - 36 1,v 2) v = 0 [30.8]

A further simplification is obtained by introducing a "dimensionless" or

"cyclic" time r = wot where w, = VtiL. This gives

dv dv dr dv

dt dr dt dr o

and similarly

d2v d2v 2

= dt 2  d 2

The differential Equation [30.1] reduces then to the following

dimensionless form

d v 2] dv

d72 + V = [ (A) + 2y()v - 36()v2 [30.9]

where

9 (W) = (Xf81 - RC)o; Y() = XY 1 O ; 6() = X 61do [30.10]
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Equation [30.9] is of the Van der Pol type. We know that the self-excited

oscillations are possible.

The equivalent system of the first order is

dv
dr W

dw [30.11]
dw - V+ (k) + 2y(X)v - 36(X)vZ]w
dr

The equations of the first approximation are

dv
dTW

[30.12]
dw

= - v + Bw
d r

The point v = w = 0 is a singular point. The roots of the characteristic

equation are

S ,2

Experimental evidence shows that in a great majority of cases the self-excited

oscillations start in an oscillatory manner like the trajectories departing

from an unstable focal point. There are cases of the so-called relaxation

oscillation which will be studied in Part IV, in which the starting of oscil-

lations occurs in the manner of trajectories departing from an unstable nodal

point but we shall not treat this case here as the theory of these oscilla-

tions has not yet-been established for the steady state.

For the oscillations developing from an unstable focal point (Sec-

tion 8) the roots

S1p212  -4

of the characteristic equation corresponding to the equations of the first

approximation [30.12] must be conjugate complex with a positive real part.

This implies that 0 < 8 < 2. Substituting for B its expression [30.10] we

obtain the condition

RC RC 2

The critical value of the parameter is given by the equation

B = (Xo01 - RC)wo = 0
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that is

RC
X0- [30.13]

In order to be able to ascertain the appearance of a stable limit cycle for

A Ao we have to investigate the non-linear Equations [30.11]. Making use
of the transformations [18.14] and [18.16] we introduce the new variables x

and y by the equations

v = 2azx + 2bly; w = 2x

with al(A) = #(X)/2 and bl(A) = /1 - P 2/4 and obtain the system

x = ax - by + [4y(ax + bly) - 126(a x + bly)2]x

[30.14]

y = bx + axy - ' [4(ax + bly) - 126(a1z + by)2 x

It is noted that the derivative with respect to X of the real part of the

roots S1 ,2 for X = X0 is positive; thus al'(Xo) > 0. Hence if we show that

a 3 (AX) < 0 we shall be dealing with Case 2 of Section 29. For X = Ao, (o) =
0 and hence a 1 (Xo) = 0; b1(Xo) = 1. Comparing [30.14] with [29.2], making

use of polar coordinates and relations [29.8] we find that

RI(0,Xo) = 0

R,(0,A o ) = 4y(X o) sin0 cos 20 [30.15]

R 3(0,Xo) = 16 y(X) sin3 O cos30 - 126(Xo)sin 2 cos 2 0

The recurrent system [29.10] of differential equations for X = AX
has the following form

du1 = 0
de

du- = 4y(Xo) sinO cos 2 0 [30.16]
dUo

du3  2u 2 R 2(,X 0 ) + R 3(O, 0o)do

Hence, upon integrating Equations [30.16], we obtain

u1( 0 ,, o) = 1

4
u2(0,X ) = 3 y(xho)(1 - cos30)

U3 = - 36(X o ) r



Making use of [30.10] we get a 3(k0) = - 3rRCwo( ) < 0. Thus, by

Case 2 of the preceding section, it follows that there is a stable limit

cycle. This, in conjunction with the instability of the focal point for

X 2 A ,x creates the favorable conditions for self-excitation.

Summing up the conclusions of this and of the preceding sections,

it can be stated that the existence as well as the nature of limit cycles de-

pends on the curvature of the non-linear characteristic of the system, where-

as the condition of stability depends on its slope at the point of equilibrium.

For this reason it was necessary to retain a cubic term in the series expan-

sion of the plate current characteristic, Equation [30.5], in investigating

limit cycles, whereas for problems of equilibrium the equations of the first

approximation, containing only the first powers of the dynamical variables,

were sufficient.

We have considered in this section only the case of a soft self-

excitation of the circuit which corresponds to a non-linear characteristic

capable of being approximated by a polynomial of the third degree, Equation

[30.5]. An entirely different kind of self-excitation occurs when the non-

linear characteristic is expressible by polynomials of a still higher degree.

Self-excitation in such cases is called hard. We shall not enter into this

subject here but will reserve it to a later chapter after we get acquainted

with the analytical method of Poincar6 (Part II).

31. SELF-EXCITATION OF MECHANICAL AND ELECTROMECHANICAL SYSTEMS

Mechanical systems, also, offer numerous examples of self-excited

non-linear oscillations, but their study is less advanced at present than

that of electrical systems. Two main reasons account for this situation.

First, the self-excited mechanical oscillations in practice are always un-

desirable or parasitic phenomena of a "closed cycle" type (Section 23) and

the main endeavor so far has been to eliminate them by breaking the closed

cycle somehow, rather than to attempt to study them. Secondly, the determi-

nation of the parameters of a mechanical system is generally a more diffi-

cult problem than that of electric circuits. It is possible only in a few

particularly simple cases in which the chain of "causes" and "effects" can

be followed completely. The following two examples of self-excited mechani-

cal oscillations may be mentioned.

A. SELF-EXCITED OSCILLATIONS OF A MECHANICAL CONTROL SYSTEM

Consider the following arrangement used for the study of anti-

rolling stabilization of ships by the method of activated tanks (25). Two

tanks are mounted on a pendulum and located symmetrically with respect to

Iwmwww 40000 A 11
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the axis of oscillation; the tanks are connected by a U-tube and filled with

water. An impeller pump having a variable blade angle a is capable of dis-

placing the water in the system so formed; the blade angle a is controlled in

response to the angular motion of the pendulum as will be specified.

The system has thus two degrees of freedom, the angle 9 of the pen-

dulum and the relative angle q of the water level in the tanks. In the phe-

nomenon of non-linear oscillations analyzed below, the motion of the pendulum

is exceedingly small, a fraction of one degree, and its direct action, that

is, by direct mechanical couplings, on the motion of water in the tanks is

negligible. There exists, however, an important action which is exerted

through the blades actuated by the control system.

If there is no control and the pendulum is fixed, the motion of

water in the system for small oscillations can be approximated by a linear

equation

J + be + cO = 0

where J, b, and c are constants the physical significance of which is obvious.

Assume now that the pump is made to act on the liquid column in the U-tube

and let the moment of the force exerted on the water by the pump be M(a), a

function of the blade angle a. Experiment shows that this couple increases

initially more or less in proportion to a and exhibits for larger angles a a

"saturation" feature due to complicated hydrodynamical effects. One can ap-

proximate, therefore M(a) = Mla - M 3a
3. The arrangement of control used in

this case is such that the blade angle is continuously adjusted to be propor-

tional to the rate of flow, i.e., to .* The expression for the external mo-

ment is then of the form alz - a3 
8.

The theory of this control is based on the linear approximation.

It is found that with a control of this kind, at least within a certain range,

the free oscillation of the pendulum is damped and the forced oscillation is

reduced in accordance with the linear theory; these features, are, however,

of no interest here. Aside from this useful effect, predictable on the basis

of a linearized equation, the following parasitic effect is observed. Under

certain conditions the pendulum, the water in the tanks, and the blade angle

begin to oscillate or "flutter" spontaneously; the oscillation of the pendu-

lum is, however, very small and will be neglected. The oscillation of the

* The blade angle in this particular case is made proportional to the angular acceleration of the pen-

dulum. The latter, however, is in phase with the rate of flow through the tube. A complete study of

the problem requires a consideration of the system with two degrees of freedom 0, 0 comprising the pen-

dulum and the water ballast. Insofar as this study is limited only to the motion of the latter, this

complete study is omitted here. Account is taken only of its final conclusion, namely, the blade angle

is proportional to the rate of flow in the U-tube.
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blades, and also of the water, designated usually as "hunting" persists in-

definitely and may acquire considerable amplitudes. The explanation of this

phenomenon follows from the preceding theory.

The differential equation with the blades under control, as speci-

fied, is

J6 + be + cO = aq - a33

that is

J + (b - a,) + a3 3 + c  = 0 [31.1]

We shall consider two cases according as b - a, < 0. It is to be

noted that the coefficients a, and as of the hydrodynamical couple depend on

the amplification X used in the thermionic circuit, so that we can consider

them as functions ai(A) and as(A) increasing monotonically with X. Hence,

for a small amplification A, we have b - a(AX) < 0 and for a larger amplifi-

cation b - al(A) > 0.

Case 1. Weak Amplification

Dividing by J and putting [b - a 1 (A)]/J= n' > 0, a3/J = p', and

c/J = W2 we have

+ n' + p'3 + ,0 = O [31.2]

By a change of the independent variable 7 = wt we obtain the dimensionless

form

+ + p + = 0 [31.3]

where n = n'/w and p = p'w. Forming the equations of the first approximation,

the characteristic equation is S 2 + nS + 1 = 0 and its roots are

S n 2
1,2 - [31.4]

Hence for n2/4 > 1 the origin, d /dr = 0, is a stable nodal point and for

n 2/4 < 1 the origin, 0 = do/d-r= 0, is a stable focal point.

Case 2. Strong Amplification

In this case b - al(A) < 0. Proceeding as previously and putting

[a 1 (p) - b ]/J = n' > O0, a3/J= p', and c/J = w2 we obtain

_ r_ [ idol2 1 dk
d2[ - P\d +  = 0 [31.51
d-r2r -

, lai111M,



102

where n = n'/w and p = p'w. The roots of the characteristic equation in this

case are

1'2 2 -Vi
S 1 ,=n + ~-1 [31.6]

Hence for n 2/4 > 1 the origin is an unstable nodal point, and for n2/4 < 1

the origin is an unstable focal point. In the first case the control equip-

ment functions without any parasitic oscillations. In the second case, since

the singularities are unstable the trajectories approach a stable limit cycle

and this characterizes a steady state of parasitic oscillations or "hunting"

which is observed in such systems if the amplification is too high. More-

over, this condition generally sets in abruptly at a certain critical value

X, of the amplification factor for which b - al(Xl) = 0.

The condition n2  1 is equivalent to (b - a, )2 / 4 J 2w 2  1. It is

the same both for stable and unstable operations of the control system. The

stability or instability of the system is governed by the sign of b - al(A)

as previously set forth.

The condition al > b also has simple meaning; in fact, a, is the

measure of the energy input on the part of the pump and b characterizes the

dissipation of energy in the system. This inequality means that initially

the input of energy is greater than its dissipation so that self-excitation

can occur with a gradually increasing amplitude of oscillation. The critical

value of the parameter is given by the equation al(Xl) = b. In this particu-

lar case there are two parameters: wl, the speed of the pump, and v, the am-

plification factor of the thermionic control system. By increasing either

one, the steepness of the characteristic is increased, and hence also a,, so

that for a certain value X = X0 the critical point is reached and the oscil-

lation stabilizes itself on a limit cycle. Beyond this point, for A > X0,

the amplitude of the limit cycles increases monotonically with A. We have,

thus, a typical case of "soft" self-excitation; see Figure 24.6. If the

characteristic has an inflection point, in addition to one for a = 0, it can

be approximated by a polynomial M(a) = M 1a + M3a
3 - M 5ac

5 where M, M 3, M 5 > 0.

In such a case the self-excitation would appear in an entirely different man-

ner, as will be explained in Part II.

Experiments corroborate these theoretical conclusions, at least

qualitatively.

B. SELF-EXCITED OSCILLATIONS IN AN ELECTROMECHANICAL SYSTEM

Another example of the same kind is the well-known experiment (26)

in which a series generator is connected to a separately excited motor.
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Approximating the voltage of the series generator by a polynomial

of the form E = ali - a3s
i , where i is the current, and expressing the condi-

tion of dynamical equilibrium of electromotive forces in the circuit, we find

3 di
ali - asi3 = Kw + L d + Ri [31.7]dt

By differentiating this equation we find

di di d
Ldt 2 -(a 1 - R - 3a3i2  dt+K dt 0 [318]

The quantity dw/dt can be eliminated from the equation by expressing that the

electrical power Kwi absorbed by the motor serves to accelerate the rotor

dt 2 dt [1.9]

where J is the moment of inertia of the rotor; whence dw/dt = Ki/J. Substi-

tuting this value of dw/dt into [31.8] one obtains the equation

d2i di
d -(m - ni ) + pi = 0 [31.10]
dt dt

where m = (a 1 - R)/L, n = 3a 3 /L, p = K 2/LJ > 0. This equation is of Van der

Pol's type. Equation [31.10] is equivalent to the system

di = y; y - (m - ni2)y + pi = 0 [31.11]
dt

The equations of the first approximations are

di dydi- y, - pi + my [31.12]
dt dt

The characteristic equation is S2 - mS + p = 0 and its roots are

2,2 - -

The singularity is a nodal point if m2/4 - p > 0 and is a focal point if

m2/4 - p < 0. This singularity is unstable if m = (a, - R)/L > 0, that is

a, > R, and stable for a, < R. For a sustained self-excited oscillation the

singularity must be an unstable focal point, whence the conditions

a 1 > R; -(aLR) - < 0 [31.13]
1 2L LJ

The first condition is a static criterion which has been analyzed in the pre-

ceding example. The second criterion is dynamical; it is generally fulfilled

S1 41W I 1 M l9 1 gIlm b l
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for not too great a moment of inertia J of the motor. The critical value of

the parameter occurs for a, = R. In practice one can select either R or a,

as the parameter X of the general theory. In the latter case it is conven-

ient to introduce an auxiliary saturation winding on the series generator

field which modifies the state of saturation in the machine and, hence, the

coefficients al and a 3 of the non-linear element of the system.

One can go a step further and determine the amplitude of the self-

excited oscillation but for this purpose we shall need the analytical method

of Poincar6 outlined in Part II. The remaining conclusions are the same as

in the preceding example.



CHAPTER VI

GEOMETRICAL ANALYSIS OF EXISTENCE OF PERIODIC SOLUTIONS

32. INTRODUCTORY REMARKS

In the preceding chapter we have investigated the principal prop-

erties of limit cycles which characterized periodic motion in non-linear and

non-conservative systems. We shall now be concerned with the question of the

existence of such motions, a rather difficult question for which the rela-

tively simple criteria of Poincar6 and Bendixson give only limited informa-

tion. In Part II we shall enter into this question in more detail in

connection with the analytical methods of Poincar6 and Liapounoff. In this

chapter we shall investigate the results obtained by Lienard (27) by study-

ing the trajectories in a special phase plane. Further progress in this di-

rection was made recently by N. Levinson and O.K. Smith (22).

These methods occupy an intermediate position between the topolog-

ical and analytical methods and thus present particular interest as a con-

necting link between them. The principal aim of these geometrical methods

is to formulate conditions under which trajectories become closed, i.e.,

when they represent periodic solutions.

The starting point is the original equation of Van der Pol

- X(1 )- x2)* + X = 0 [32.1]

generalized by Lienard and the Cartans (28) to

i + f(x)x + x = 0 [32.2]

and by N. Levinson and O.K. Smith to

i + f(x, ) + g(x) = 0 [32.3]

The functions f and g entering into these equations are subject to certain

restrictions which will be specified later.

It may be worth mentioning that the original proof of the existence

of periodic solutions for [32.1] by Van der Pol rested upon the graphical

method of isoclines, see Section 7. Before proceeding with the geometrical

analysis of the more general Equations [32.2] and [32.3] it is useful to con-

sider the original Van der Pol Equation [32.1] from the physical standpoint.

It is apparent that [32.1] may be considered dynamically as an

autonomous oscillatory system with one degree of freedom possessing a vari-

able damping - p(1 - x2 )x. For small deviations x the system has a negative

damping, for larger x the damping becomes positive. In the light of what has

been said regarding "negative damping" one concludes that for small values of
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x the system absorbs energy from an outside source so that in the early

stages the motion develops with gradually increasing amplitudes; for large x,

on the contrary, the system is dissipative, hence, the amplitudes decrease.

Ultimately a steady state is reached when absorption and dissipation of en-

ergy balance one another throughout the cycle. This is, in fact, in entire

agreement with observation.

Unfortunately these physical considerations are insufficient. Since

the system is non-conservative, one cannot utilize the energy integral, as

was the case for a conservative system, see Chapter II. It becomes thus nec-

essary to establish conditions for closed trajectories and to infer from them

that a periodic process is possible.

33. LIENARD'S METHOD

Consider the following differential equation

i + wf(x)x + w 2x = 0 [33.1]

where f(x) is a continuous, differentiable, even function of x; additional

properties of f(x) will be specified later. Taking wt as a new independent

variable this equation can be written as

x + f(x) i + x = 0 [33.2]

Since no further confusion is to be feared we shall use the same symbols i

and i as in [33.1] although occasionally we shall write [33.2] as

S+ Wof(x) X + ox = 0

with wo = 1, in order to remind one of the dimensional homogeneity of the

original Equation [33.1]. It is apparent that [33.1] is a particular case

of [32.3]. If f(x) m 0, the motion is harmonic, corresponding to the equa-

tion i + x = 0. If f(x) = C, C being a constant, we have the well-known

damped motion, either oscillatory (ICI < 2) or aperiodic (ICI > 2); see

Chapter I. Setting x = v, Equation [33.2] is replaced by the system

dv
x = v; v - + f(x)v + x = 0 [33.3]dx

The second Equation [33.3] can be written

dv+ f(x)+ = 0 [33.4]
dx v

Introducing a new variable y = v + F(x), where F(x) = f(x)dx is odd since

f(x) is even, we replace [33.4] by o

dy x
dx + = 0 [33.51
dx y - F(x)
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This equation can also be written as

xdx + [y - F(x)]dy = 0 [33.6]

The system [33.3] can also be written in the form

dy dx dx
dy- dx) dx = dt = wodt [33.7]
x y - F(x) v

Since the independent variable t does not appear in [33.6], the latter repre-

sents the phase trajectories in the (x,y)-plane of the dynamical system

[33.2]. It must be noted, however, that the (x,y)-plane of Linard is dif-

ferent from the customary (x, y = i)-plane considered previously so that the

geometrical form of the trajectories in both cases is necessarily different,

as will be shown in Section 37. The use of the Li6nard plane [x, y= v + F(x)]

makes it possible to obtain a relatively simple geometrical construction of

the trajectories.

In fact, the equation of the normal at the point (x,y) on the tra-

jectory is (x - X)dx + (y - Y)dy = 0, and from [33.6] we see that it is sat-

isfied for X= 0, Y = F(x). There-

fore, the normals to the phase tra-

jectories of Li6nard's Equation

[33.6], for x = x1, all pass through

the same point N whose coordinates NN

are 0, F(xl). Hence, one obtains c

the elements of trajectories along Fx)

the line x = x, by taking on the x x

y-axis a point N, whose ordinate is N

Y1 = F(x,) and by describing with N1
as center a series of small arcs as

shown in Figure 33.1. By taking

other points x = x2, x3, ... and by

repeating the procedure, additional Figure 33.1

elements of trajectories are obtained.

Having a field of line elements and starting from a certain initial point

(xo, y) a continuous curve can be traced following the line elements so

traced; this curve will be clearly a trajectory of Lienard's Equation [33.51

or [33.6].

Since F(0) = 0, it follows that the only singular point of Equation

[33.5] is the origin x = y = 0. Furthermore trajectories are symmetrical

with respect to the origin, for the substitution of - x for x and - y for y

does not change [33.5], since F(x) is odd. Likewise, upon replacing + y by

- y, + dt by - dt, f(x) by - f(x), Equation [33.5] is not changed; hence,

__ _ __ __ __~ 1, h MII11 i
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this substitution transforms a trajectory into its symmetrical image relative

to the x-axis. The curve y = F(x) and the y-axis determine four regions 1,

2, 3, 4 shown in Figure 33.1; the limits of the first and the second regions

are shown by a different shading in Figure 33.1.

From'Equations [33.7] it follows that the differential elements of

the trajectories in these regions for dt > 0 are such that dy and x are of

opposite signs and that dx and y - F(x) are of like signs. In terms of these

regions the following table is apparent.

x y - F(x) dx dy

Region 1 + + + -

2 + - - -

3 - - - +

4 - + + +

From [33.6] it follows that dy/dx = o when y = F(x). Hence, the

tangent to the trajectories is vertical at points C at which the trajectories

intersect the curve y = F(x); the abscissa of point C thus determines the

amplitude of oscillation in the (x,y)-plane.

Instead of the above construction one can apply the method of iso-

clines, see Section 7. From [33.5] we have

dy x
dx y - F(x)

that is, y = F(x) - x. The locus of isoclines dy/dx = a = 0 is thus on the

y-axis; that of dy/dx = a = o is on the line y = F(x); and that of dy/dx = 1

is on the line y = F(x) - x and so on.

34. EXISTENCE OF CLOSED TRAJECTORIES IN THE LIENARD PLANE

We shall now consider the most important point of the Lienard the-

ory concerning the existence of closed trajectories in the (x,y)-plane pre-

viously defined. Instead of Lienard's original proof, we shall follow the

one given by N. Levinson and O.K. Smith (22). They consider an equation

i + f(x)x + g(x) = 0 [34.1]

more general than that of Van der Pol (1), but possessing essentially the

same characteristics which are given explicitly below.

Introduce the functions F(x) =f f(x)dx and G(x) = f g(x)dx. The

conditions in question are as follows. 0
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1. All functions are continuous. f(x) Y
F(x)

is an even function of x, hence, F(x) is odd.
g(x) is an odd function of x, hence, G(x) is

even. The sign of g(x) is that of x.

2. F(x) has a single positive zero x0. o xo X

It is negative for 0 < x < zx. For x > x0 it

increases monotonically and hence is positive.

3. F(x) +o with x. Figure 34.1

It is to be noted that F(x) need not be

monotonic for 0 < x < xo, as shown in Figure 34.1.

Under these assumptions, as N. Levinson and O.K. Smith show, Equation
[34.1] possesses a unique periodic solution.

Following the same procedure as in Section 33, one obtains the gen-

eralized Li6nard equation

dy g(x)
dx + (X 0 [34.2]dx y - F(x)

We shall show that there is one, and only one, closed trajectory of [34.2].

Considerations of symmetry clearly remain the same as in Section 33. This

means that a closed trajectory passing through a point (0,yo) must necessar-

ily pass through the point (0,- yo ). Conversely, a trajectory passing

through points (0,yo) and (0,- yo) must necessarily be closed, since on leav-

ing (O,yo) it is symmetric with respect to the origin along the arc of the

curve lying between (0,yo) and (0,- yo). The existence and uniqueness of a

periodic solution will be proved if one shows that among all trajectories

there is one, and only one, with equal positive and negative intercepts OA

and OB. In outline this is done as follows. Introduce the function

X(x,y) = y2 + G(x) [34.3]

Thus (0,y) = 2. In order to show that OA = OB, it is only necessary to

show that XA = XB sometime. Now Equation [34.2] may be written ab

ydy + g(x)dx = F(x)dy = dX [34.4]

Thus

B B

f d = X - XA = F(x) dy [34.51
A A

where, here and throughout the rest of the section, the integrals are curvi-

linear integrals taken along the trajectories.

I __ 111111 1111 1111111
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The examination of Figure 34.2

A' S SI1" fact, if the point C at which the trajectory
L--- ' intersects the curve y = F(x) is to the left

- 1 F(x) of the point H, the curvilinear integral

Sf dedX > 0, since both F(x) and dy are negative
o J X in that region. As the points A and B move

S-- away from the origin the contribution of the

a Ks curvilinear integral in this region is de-

creasing monotonically while being positive.

Since F(x) remains negative, it follows that

Figure 34.2 y - F(x)l increases indefinitely. Further-

more, since g(x) is bounded and positive, we

see from [34.2] that dy decreases.

Since F(x) increases monotonically in the region to the right of H,

the contribution to the curvilinear integral along the arc G'C'K' is negative.

Hence, the curvilinear integral dA decreases monotonically as A and B move

away from 0 since its positive part, due to the elements to the left of H, is

bounded while its negative part due to the elements situated to the right of

H, is negative and increases monotonically. Hence, there exists one, and

only one, position of the points A and B on the y-axis for which f dX = 0 and
for which there corresponds a unique closed trajectory. This fact is ex-

pressed by the condition that

B

fF(x)dy = 0 [34.6]
A

35. FIRST ASYMPTOTIC CASE: p << 1

We shall now consider Equation [32.2] in which g(x) M x. In

Lienard's form [33.6] it is

xdx + ydy - F(x)dy = 0 [35.11

In the asymptotic case, when F(x) is very small, we may replace F(x) by pF(x)

where p is a small number.

If p = 0, the trajectories are circles X2 + y2 = constant. If

#p 0, and a periodic solution exists, clearly a closed trajectory will dif-

fer but little from a neighboring circle. We propose to determine the circle

in whose neighborhood there exists a closed trajectory. The criterion [34.6]

which has been obtained geometrically will serve this purpose.
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Making use of the polar coordinates x = R sin 0; y = R cos 0, [35.1]
can be written as

dR F(Rsin )Rsin
d - R - pF(R sine) cos

or

dRdR _- pF(R sing) sine [35.2]
do

Therefore, [34.6] becomes

f F(R sin) )R sino d = 0 [35.3]
0

Thus, for Van der Pol's equation, f(x) = x2 - 1; F(x) =- x, [35.3] is
3

fjF(Rsinl) sine d - 0 [354]
S8 2

0

Hence when p is small, R = 2 is the radius of the 'circle in the vicinity of

which there exists a closed trajectory. Furthermore, a simple approximation

based on the smallness of p shows that along the closed trajectory the angu-

lar velocity wo0  is constant.

It is to be observed that we have obtained a first order solution

of Van Der Pol's equation by a mixed method, viz: the criterion [34.6] has

been established by means of a geometric method and from that point the argu-

ment has been analytic. It will be shown in Part II that the same result can

be obtained by purely analytical methods.

36. SECOND ASYMPTOTIC CASE: THE PARAMETER p IS LARGE

The case in which p is large is of great importance in the applica-

tions, e.g., the so-called RC oscillations in modern thermionic circuits. The

oscillations are now strongly distorted, showing the presence of numerous

harmonics. For this reason, the application of the analytical methods of ap-

proximation given in Part II, become too laborious owing to the poor conver-

gence of the Fourier expansion representing the oscillation. Lienard did,

however, develop an approximation method yielding considerable information

regarding the wave forms of the oscillations for large values of p. We now

propose to show this method.

Setting y = pz in Equation [33.6] and replacing F(x) by pF(x), as

in Section 35, we obtain

z - F(x) dz + 2 xdx = 0 [36.1]
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For p very large this equation can be written approximately

z - F(x)] dz 0 [36.2]

The integral curves in the (x,z)-plane consist of the principal branches z =
F(x) and z = constant, joined by short arcs.

Referring now to Equations [33.7], we shall examine the relative

order of magnitude of the terms under the assumption that p is large; thus,

terms like C, where C is finite, are treated as small quantities of the

first order. Equations [33.7] in the new variables (x,z) are

dz
dt = wodt = - dz

dx
dt = wodt = d

,[z- F(x)]

From the first Equation [36.3] it follows that dz/dt - 1/p, where the symbol

- means "of the order of," that is, of the first order, since x is finite.

On the other hand, since z ; F(x) by [36.2]

dz dF
d- f(x)dx dx

dz dz dt dx 1
which is finite. But hence, - . Since the velocity remainsdx - dt dz dt "
small in this finite interval, we conclude that it takes a relatively long

time to traverse it. Thus, we can conclude that on the branch z = F(x) the

representative point R in the (x,z)-plane moves slowly; its velocity is small,
of the order of 1/p. Clearly, the acceleration d2x/dt 2 is then of the second

order of smallness, 1/p2, and can be neglected in the differential equation

x + pwof(x) + Wo x = 0 [36.4]

which, moreover, is Equation [32.2] since wo = 1. Hence, limiting the terms

to the first order only, [36.4] becomes

/pof(x)x + 02X = 0 [36.51

Thus, under the assumed approximation, the second order Equation [36.4] can

be replaced by the degenerate Equation [36.5] of the first order, with an

error of the order of 1/p2. This subject will be considered more fully in

Part IV.

One must ascertain the order of the approximation z - F(x) 0,
arising from the use of [36.2] instead of [36.1]. First, from the comparison

of [36.1] and [36.2] it follows that the approximation is of the order of

,,,i ttl NUMINA1 W ll,
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1/p2. One can also see this from the second Equation [36.3], since dx/dt - 1/p.

We thus infer that on the branches z - F(x) of integral curves, the represen-

tative point R moves slowly with a velocity of the order of 1/p and an accel-

eration of the order of 1/#2 . It takes, therefore, a relatively long time to

traverse these arcs in view of the fact that x is finite.

We shall now investigate the motion on the other typical arcs for

which dz 0, that is z - constant; z - F(x) is finite and stays away from

zero. From the second Equation [36.3] we observe that dx/dt - p, that is,

d2x/dt2 _ 2, so that we can now neglect the term w 0
2 x in [36.4] and write

i + aWof(x) = 0 [36.6]

From [36.1] it follows that dz/dx _ 1/p 2; hence, in the (x,z)-plane the slope

of the curve is very small for this second characteristic branch, dz ;- 0.

This almost horizontal branch in the (x,z)-plane is traversed very rapidly,

since dx/dt p and p is very large in this case.

37. LIMIT CYCLES IN THE VAN DER POL AND LIENARD PLANES

We may now summarize Li6nard's principal results and compare them

with the earlier results obtained by Van der Pol. The experimental results

in connection with Van der Pol's equation

S- u(1 - Z2) + x = 0 [37.1]

in the (x,t)-plane are shown in Figure 37.1 for three values of the parameter

p (1). For the representation of the trajectories of [37.1], Van der Pol uses

the (x,x)-plane with which we were concerned throughout the first four chap-

ters of this report.

Van der Pol originally obtained the phase trajectories for [37.1]

by the graphical method of isoclines; these results are shown in Figure 37.2.

(a)

(b)

)10

(C)

Figure 37.1
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= 0.1

C C

0

(a)

(C)

Figure 37.2

In fact, Liapounoff's equations of the first approximation are x = y, y =
x + My; the characteristic equation is

S 2 - pS + 1 = 0 [37.2]

For 0 < p < 2 the roots are conjugate complex with a positive real part, and

the origin is, thus, an unstable focal point. For p = 0.1, the limit cycle

C differs very little from a circle of radius 2 and the trajectories approach

it both from the inside and the outside as shown in Figure 37.2a. For p =

1.0, the origin is still an unstable focal point but the limit cycle C dif-

fers considerably from a circle as shown in Figure 37.2b corresponding to

the experimental curve in Figure 37.1b. For p = 10, the roots of [37.2] are

real and positive; the origin is an unstable nodal point. The trajectories

in the (x,x)-plane leave the origin along definite directions and approach

the limit cycle without spiralling as shown in Figure 37.2c. It is observed

that the limit cycle is now strongly distorted and acquires an elongated

narrow form; the corresponding oscillation in the (x,t)-plane, Figure 37.1c,

exhibits the presence of numerous harmonics.

If we consider now the shape of trajectories in the Lienard plane

[x, v + F(x)], where v = dx/dt, the situation is somewhat different, as shown

in Figure 37.3 taken from a paper by Ph. LeCorbeiller (29). For p = 0.1,

Figure 37.3a, the limit cycle C is again nearly a circle as in the (x,x)-plane.

For larger values of p, Figures 37.3b and 37.3c, the limit cycle undergoes a
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different kind of deformation as compared to that in the (x,i)-plane and ac-

quires an almost rectangular form for p = 10 as shown in Figure 37.3c. One

recognizes in this figure the second asymptotic case, > >> 1, of Lienard

discussed in the preceding section.

The peculiar motion of the representative point on a distorted

limit cycle as shown in Figure 37.3c represents a typical case of relaxation

oscillations for large values of the parameter M appearing in a great number

of applications.
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CHAPTER VHI

CYLINDRICAL PHASE SPACE

38. GENERAL REMARKS. LIMIT CYCLES OF THE FIRST AND SECOND KIND

In problems dealing with the motion of a rigid body about a fixed

axis, e.g., pendulum rotor of an electric machine, etc., the position and

velocity are determined uniquely in terms of a certain angle q, to within a

multiple of 2n, and its derivative 6. One may thus assert that the dynamical

state of the system is represented by a point on a cylinder with the cylin-

drical coordinates 0, the curvilinear coordinate measured along the arc of a

right section of the cylinder, and z = , the coordinate measured along the

generating line. This mode of representation will be discussed here.

The general properties of this phase space are about the same as in

the case of a plane. Thus, we may have singular points, limit cycles, etc.,

on the surface of the cylinder. There will appear, however, a special fea-

ture due to the fact that we are representing the trajectories on a cylinder

and not on a plane. Consider the simplest case of the motion with constant

velocity z = q0. In the phase plane this motion is represented by a straight

line parallel to the q-axis. Clearly no periodicity is involved in this case

If, however, the phase plane is wrapped on a cylinder the trajectory in this

case becomes a right circular section and is thus closed. We thus conceive

of a periodicity "around the cylinder" although we lose the grasp of this

periodicity if we unwrap the cylinder on a plane. We shall call this partic-

ular form of periodicity, inherent in the form of this particular cylindrical

phase space, as periodicity of the second kind.

It is apparent that this periodicity corresponds

S1 to a closed trajectory such as S in Figure 38.1.

--s' By a slight extension of the definition of the

limit cycle we can say that such a closed trajec-

tory is a limit cycle of the second kind if it is

approached either for t = + o or for t = - o by

non-closed trajectories going around the cylinder

S 1o in the manner of the curve S'.

The limit cycles in the phase plane with
-C which we have been concerned previously appear on

-Singular
Point the surface of the cylinder as closed curves C

bounding a region of the cylindrical surface; we

shall call them limit cycles of the first kind.

Figure 38.1 It is apparent that these cycles represent the
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same situation which we have already studied in the phase plane; the only dif-

ference lies in the fact that the plane is wrapped on the cylinder. Further-

more, the theory of Poincar6 remains applicable to these limit cycles. Thus,

for example, we can assert that inside a closed trajectory of the first kind

there must exist a number of singularities with the algebraic sum of their

indices being equal to + 1 and so on.

We cannot, however, assert this with respect to the closed trajec-

tories of the second kind since these do not bound off any region. The im-

portant property of these closed trajectories lies in the fact that they have

a period 27r relative to q which does not depend on time. This means that such

a limit cycle is fully described when the coordinate 0 varies by 27f.

It may be observed that through a suitable transformation of coor-

dinates the cylindrical phase space may be replaced by a plane with the ori-

gin left out. In fact, if we set p = eZ, where z = $, then the point M(q,z)

of the cylinder goes into a point M'(q,p) of the plane and the correspondence

between M and M' is one to one and continuous in both directions, that is,

topological. Since z varies between plus and minus o, p varies between 0 and

+ 0, zero being excluded. Thus the cylinder is transformed into the whole

plane with the origin left out. Through this transformation the circle z = 0

of the cylinder goes into the circle p = 1

in the plane and the generating lines of

the cylinder are represented in the (0,p)-

plane by the half-ray, OR, passing through s R

the origin. The closed trajectories of the

first kind are those which do not go around

the origin O, e.g., curve C in Figure 38.2,

whereas those of the second kind are those

which go around it, such as curve S.

Intuitively speaking, the trans-

formation M*M' is equivalent to a flat-

tening out of the cylinder into a plane.

This plane representation makes it clear Figure 38.2

that the usual features of the planar sys-

tem should be expected here. In fact, in the planar representation, the

closed trajectory of the second kind acquires a familiar feature, that is,

the origin behaves now in all respects as a point singularity.

39. DIFFERENTIAL EQUATION OF AN ELECTROMECHANICAL SYSTEM

Consider the differential equation

A6 + BO + f(0) = M

_ 1111111 111__ 1111i
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where A, B, andM are constants and f(O) is a periodic function of 0. In the

following, we take f(O) = C sin 0. In this case

AO + BO + Csin0 = M [39.2]

Equations [39.1] and [39.2] are non-linear on account of the presence of the

terms f(O) and C sin 0.

As an analogue of [39.2] one may consider a physical pendulum with

constants A, B, and C, acted upon by a constant moment M. The general char-

acter of the motion can be, in this case, either oscillatory or rotary accord-

ing to the relative magnitude of M, "dead beat" or with dying-out oscillations,

etc.

Our purpose will be to consider the solutions of this differential

equation in a cylindrical phase space in which the existence of periodic tra-

jectories of the second kind will be established. Introducing the "dimension-

less time" 7 = wot = t and putting = a > 0, M = o, [39.2]
becomes

d 20 dO
dt 2 + a dt + sin0 - 9 = 0* [39.3]

We shall make use of this form in what follows.

40. CYLINDRICAL PHASE TRAJECTORIES OF A CONSERVATIVE SYSTEM

Equation [39.3] is equivalent to the system

dO dz
= z; -=- az - sin + 8 [40.1]dt dt

Hence

dz _ - az - sinO [40.2]
dO z

For a conservative system a = 0. In this case [40.2] can be integrated and

we have
12 1

z = + cos + 1k [40.3]2 2
1

where k is a constant of integration. Hence

z = + V2(fo + cosO) + k [40.4]

Several cases are possible, according to the value of 8.

1. fl = 0, hence, M= 0. For k = - 2, z = dO/dt = 0, and 0 = 0; for

k > - 2 these are closed periodic trajectories around the singular point

* Since no confusion can arise, the usual notations d2O/dt2 and de/dt, instead of d20/d1 2 and dO/dr,

will be resumed.
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0 = 0, z = 0. The latter is, thus, a vortex point. The periodic trajecto-

ries form a continuum of closed curves for the interval - 2 < k < + 2. For

k = + 2, we obtain separatrices limiting "the island" of closed trajectories

in the phase plane. The separatrices issue from saddle points for 0 = + Ir.

Thus far the discussion has been analogous to that of Section 12.

Let us wrap the plane figure on a cylinder of unit radius, see Figure 40.2;

the points 0 = - i and 0 = + 7 will coincide on the cylinder. The trajecto-

ries of the second kind are those which go outside the separatrices. On the

cylinder they appear as surrounding the cylinder but not the singularities.

2. # p 0. Let z = ± V2(00 + cos 0) + k = + /2yl + k. The curve y, in

Figure 40.1a has maxima and minima rising on the average due to the presence

of the term 80. If the curve z = z(0) in Figure 40.1b is wrapped on the cyl-

inder, the trajectories have the appearance shown in Figure 40.2. The peri-

odic trajectories do not go around the cylinder, hence, they are not of the

second kind.

If # = 1, the curve y, = z(80 + cos 0) has only an inflection point

but no maxima or minima; for 8 > 1, the curve y, is monotonic without inflec-

tion points. One can construct these curves in a plane and, by wrapping them

on the cylinder, form an idea of their appearance. No periodic trajectories

exist, and the use of a cylindrical phase space offers no particular advan-

tages over the phase plane.

41. CYLINDRICAL PHASE TRAJECTORIES OF A NON-CONSERVATIVE SYSTEM

For a non-conservative system, a # 0 and we must, therefore, con-

sider [40.2]. This equation cannot be integrated directly. We assume in

_ ___ _ __ I I11 __ _ 011 , O l
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this and in the next section that f# +1. The singular points are given by

the equations

z = 0; B - sinO = 0 [41.1]

They exist only for B < 1 in which case the second Equation [41.1] admits two

groups of roots

0 = 0o + 2kr; ej = (2k + 1)r - 0o  [41.2]

where 00 = sin-# and Oo assumes the principal value, that is, 0 < 00 < 7n/2.

Accordingly, there are two groups of singular points: Ai with coordinates

(0 = 60, z = 0) and A, with coordinates (0 = 60, z = 0). It is sufficient

to consider two singular points, one in each group, say, Aio(o = 0o, z = 0);

Ajo(O = 7r - Oo, z = 0).

1. Group A1 . For this group 06 = 2k7r+ 00, z = 0. Consider a slight

departure e from 00. We have 0 = 0o + e, do = de, and, by [40.2]

dz _ dz _ e -az - sin(0 0 + e) [41.3]
dO de z

Developing sin (0o + e) in this equation, one has sin (0o + e) = sin 0o +

e cos 00. Since, for the singular point, 8 = sin 0., we have from the equa-

tion of the first approximation

dz - az - e Cos 0o [41.4]
de z

corresponding to the system

dz de
dt - az - ecOS00 dt - z [41.5]dt' dt

The characteristic equation is

S 2 + aS + cos 0o = 0; a > 0 [41.6]

Using the criterion given in Section 18, we find that, if

2 < 4 cos 00, the singularity is a stable focal point; if a 2 > 4 cos o0, it

is a stable nodal point.

2. Group Aj. For this group of singularities, the coordinates are

Oj = (2k + 1 )r - 00, z = 0. Proceeding as before, one finds

dz - az + Ecos 0 o [41.7]
de z

and the characteristic equation is

S 2 + aS - coso 0 = 0 [41.8]
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Its roots are

S1,2 -- + cose 0  [41.9]

The singularities of this second group Aj are thus saddle points.

42. CLOSED TRAJECTORIES OF THE SECOND KIND IN NON-CONSERVATIVE SYSTEMS

We shall now investigate periodic solutions of the second kind of a
non-conservative system, a > 0. Two cases are to be distinguished.

1. 8 > 1. In this case there exists exactly one periodic solution

with the period 27f. In order to establish the existence of such a periodic

solution it is sufficient to prove the existence of two particular solutions

z1(0) and z2,() such that for an arbitrary 0, z1(0 + 27r) z1 (0), z2,( + 27r)

z2 (0). The existence of a solution satisfying z(6 + 2f) = z(0) follows then

by continuity reasons since there are no singular points if . > 1. From

[40.2] it is noted that the equation of the isocline dz/dO = 0 is

# - sin [42.1]
z = [42.1]

Curve [42.1] in the (z,0)-plane is, therefore, a locus of points at which

dz/do = 0. This curve crosses the axis of 0, i.e., z = 0, only if 8 < 1.

If fl > 1 the curve is above that axis. These two cases are shown in Figures

42.1a and 42.1b. From [40.2], it follows that for z = 0, dz/dO = co. More-

over, the shaded areas in Figures 42.1a and 42.1b correspond to regions in

which dz/dO > 0; the non-shaded areas correspond to dz/dO < 0.

In order to find one of the two particular solutions, it is neces-

sary to express the fact that this solution goes above the sinusoid of Fig-

ure 42.1. Since in this region dz/dO < 0, and hence, z (Oo + 2ff) < z(Oo).

One solution of this type can be found if we take z(Oo0 ) > (1 + fl)/a, because

this initial point lies certainly above the curve z = (8 - sin 0)/a, that is,

in the region in which dz/dO < 0. This solution satisfies the above condi-

tion required for z1.

z,(e)

,

dz> o
(a) (b)

Figure 42.1
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In order to find the second particular solution z2 satisfying the

condition z2 (00 + 27n) > z2 (00 ), consider the minimum point A on the curve of

Figure 42.2. For this point 0 = ?r/2 and z = (, - 1 )/a. A curve z 2 (0) issu-

ing from A is in the region where dz/dO > 0; hence, the curve z2 (0) is rising

and must intersect the sinusoid at a certain point M. Since the sine curve

is the locus of dz/dO = 0, clearly, M is a maximum point for z2 (8). Beyond

the point M, the curve z2 (0) decreases. Further-

z more, the next intersection M1, cannot be lower

M than the point B, since at the point of intersec-
M, tion M , the curve z2(0) has a horizontal tangent.

A z 2() It is thus seen that the condition z2 ( o0 + 2n)

B G z2(00 ) is fulfilled, and hence, by 
virtue of the

Figure 42.2 continuity of the sequence z(0) in the interval

(z, z2 ) there is a periodic solution zo in the

interval (z1,z2 ).

It now will be shown that this periodic solution zo is unique. In

fact, integrating [40.2] between 01 and 01 + 27 one has

01 + 2f7

z2 (1 + 2r) - z1 (1) = - a z d + 2 78 [42.2)
01

If the solution is periodic then z(o1 + 27r) = z(o 1 ), whence

01 + 27r

f zd9 = 27rnf [42.3]
J a

01

Equation [42.3] expresses the condition of periodicity. Assume now that

there are two periodic solutions zol (0) and z0 2 (0). Since there are no sin-

gularities, these solutions cannot intersect each other, so that one of them

is always greater than the other, e.g., z 0 1 (0) > z 0 2 (0) for all 0, whence

01 + 27 01 + 27

f zo(o)do > zf ,(0)do
01 01

This, however, is impossible by virtue of [42.3]; hence, the periodic solu-

tion is unique.

2. # < 1. Consider again the diagram of Figure 42.2. Proceeding as

before, one can establish first that there exists a solution z1 (00 + 2f)

z1 (0o). In order to see that there exists another solution z 2 (0 0 ), such that

z2 (0 + 2n) a z 2 (0), it is convenient to consider two integral curves FT and
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F 2 on the surface of the cylinder passing through two adjoining saddle points,

singular points of group Aj, separated by 27f. The curve F has the same

slope at the point Aj, as the asymptote of the positive slope and F 2 has the

same slope at the next saddle point Aj2 as the asymptote of the negative

slope. One can show that, for sufficiently small values of a, the condition

z2 (00 + 27r) z2 (Oo ) is fulfilled. Hence, for sufficiently small values of

a and of the constant B, Equation [39.2], a periodic solution of the second

kind exists.

Physically this condition is obvious; in fact, since the system is

acted upon by a constant moment of force M, one can readily see that, if the

damping is not too great, the rotary motion of the pendulum may become peri-

odic when the energy communicated by the moment Mper cycle is just equal on

the average to the energy dissipated by damping. If the damping is just

slightly below or above this critical value the rotary motion will become

either damped, i.e., the trajectory approaches a focal point, or will con-

tinue with an increasing angular velocity. In the latter case a state of

periodicity of the second kind will eventually be reached when the energy

communicated to the system by the constant moment M will be just equal to the

energy dissipated by damping. As a result there will appear a periodic tra-

jectory of the second kind closed around the cylinder and not enclosing any

point singularities on its surface.

The topological picture on the surface of the cylinder will thus

have the various aspects shown in Figure 42.3. The separatrices issuing from

a saddle point may either approach a limit

cycle of the second kind extending around

the cylinder or approach a stable focal

point. In the former case the originally I

unstable motion will have a tendency to ap- Limit Cycle
of the

proach a periodic rotary motion; in the lat- Second Kind

ter case the motion will approach a definite - --

angle around Which the oscillations will Focal

gradually die out. There exist also sepa- Point -Soddle
Point

ratrices of the second kind, i.e., turning

around the cylinder, which approach a saddle

point; in this case the trajectory will ap-

proach the saddle point asymptotically. - 7

Since the latter is unstable, it will depart

from it following one of the other two as-

ymptotes either to a periodic trajectory of

the second kind or to a stable focal point. Figure 42.3
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From this study it follows that the advantage of analyzing a phe-

nomenon of this kind in a cylindrical phase space is particularly marked when

the process extends over a number of periods of the system.

43. OSCILLATIONS OF A SYNCHRONOUS MOTOR

A noteworthy situation, calling also for a cylindrical phase space,

is the investigation by Vlasov (30) of the oscillations of a synchronous

motor around its average angular velocity. As is known, a synchronous motor

is a mechanical system, a rotor, with one degree of freedom 0 about its axis

of rotation, driven normally at a constant angular velocity w0 by the elec-

tromagnetic driving torque T produced by a rotating magnetic field. This

field is excited by a polyphase stator winding and "locked" in synchronism

with the corresponding field of the salient poles on the rotor excited by a

direct current. The manner in which both fields on the stator and rotor are

locked is represented graphically in Figure 43.1 by the lines of magnetic in-

duction. It is observed that these lines cross the air gap obliquely as

Stator

I N

Rotor

Figure 43.1

shown; this fact, on the basis of the Faraday-Maxwell theory concerning the

pondermotive forces acting along the lines of magnetic induction, accounts

for the mechanical torque applied to the rotor. It is seen, thus, that for

a given value of the resisting torque T,, there corresponds a given lag g0

of the rotor poles behind the corresponding stator poles. If the resisting

torque T, suddenly increases, for instance, the relative angle 0 increases

which accounts for a corresponding increase of the tangential component of

the lines of magnetic induction in the air gap owing to a greater obliquity

of these lines in the air gap. This occurs until a new equilibrium between

T and Tr is reached. This transient state is, in all respects, similar to

that which would exist if one had two rotating mechanical systems connected

by springs. It is apparent, however, that if the resisting torque T, becomes

11o, pf illfillaw 1 1 I n III~
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so great that the relative angle 0 separatrix

reaches the value 0 = 'r, this similar- Stable Focal Point
ity with the above mentioned mechanical

picture ceases because an S-pole on the

stator comes in front of an S-pole on A

the rotor and instability results in the

interval (7t,27r) inasmuch as the like

poles repel each other. Furthermore,

the rotor has a tendency "to drop out

of step" and slow down still further. Figure 43.2

It may, however, "get into step" again

when N i comes in alignment with S2 since a stable configuration reappears ex-

actly similar to that which existed originally. It follows that, if the dis-

turbance causing a change AO of the angle 0 is such that the new equilibrium

point A is within the region of stability, there appears a relative trajec-

tory approaching the point A in the manner of a spiral approaching a focal

point; see Figure 43.2. If, however, the disturbance is so great as to carry

the representative point to a point A' on the other side of the saddle point

S, limiting the region of stability, the spiral trajectory originating at A'

will approach another focal point B situated at an angular distance 0 = 27r

from the former point of equilibrium A.

It may happen under special conditions, which were produced elec-

trically by Vlasov but not commonly encountered in connection with the indus-

trial synchronous motors, that the rotor runs at a certain speed below the

synchronous speed. In such a case, the rotor poles "slip" continuously be-

hind the stator poles and the performance in this case is called asynchronous.

It is apparent that this mode of operation is possible only when a certain

asymmetry exists in the driving torque so that a continuous slipping of rotor

poles behind the stator poles is accompanied by a certain average value of

the driving torque for the angular period q = 27. Thus it is clear that a

steady state of asynchronous performance corresponds to a limit cycle of the

second kind. It is to be noted also that, under certain conditions usually

eliminated in industrial motors, a steady sustained oscillation of the rotor

speed about its normal synchronous speed wo may arise. It is generally im-

possible to eliminate an oscillation of this kind by any damping devices and,

therefore, it is particularly objectionable. These self-sustained oscilla-

tions are characterized by the existence of limit cycles of the first kind.

With this physical picture of the phenomena involved we can now proceed with

a brief outline of Vlasov's theory.

1i. 1 l M1 I U ,IIUMM I ul



126

The differential equation of motion of a synchronous motor accord-

ing to Dreyfuss (31) is

I d 2 + mpEoVcosp f[sin( + p) E sin p _ E o sin4p dy +
p dt 2  2wx fl Vo Vo 4wcosp dt

+ mV COS P y 2 sin(y +p) sin(y + p)- sin M [4 32wxReEo Vo d M t3.1

where I is the moment of inertia of the rotor,

m is the number of phases,

p is the number of pairs of poles,

E 0 is the electromotive force induced per phase of the stator in a

steady state,

y = dEo/die is the tangent to the saturation curve E o = f(ie) where

ie is the d-c excitation,

V0 is the voltage applied to one phase of the stator,

7r- ~ is the angle between vectors E and V,

p = tan-l where r is the ohmic resistance and x is the resistance

per phase of the stator,

M is the driving moment,

Re is the resistance of exciting winding, and

w = 2nf is the angular frequency where f is the frequency.

Introducing the constant factors

E K mpkVO 2 a my a 2Mwux
o  ' K, cos p = a , = ' 2 c, -= [43.2]

Vo 2pwx 4 2&wxR mpVo2

and the new variables # = y + p at t = 7, one transforms [43.1] into the

dimensionless form

d r 2 + sin + K cos p sin (sin - 2K sin p) -

- Kb sin4p d _+ Ksinp [43.3]
cos p dt K Kcos p

This equation corresponds to the system

do

[43.4]

dz fl .Ksinp-sin + [Kbsin4p cdz -+ Ksinp - sin + K sin4p - cosp sin (sin - 2Ksinp) z
d-r Kcosp cosp K
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Consider now a cylindrical phase space with the axis of the cylin-

der parallel to the z-axis. This is an appropriate representation since the

form of [43.4] does not change when 0 is replaced by o + 2Kr, the q-axis is
curvilinear along the circular cross section of the cylinder. Equations

[43.4] can be written as

de dz
- z; - v - sin + f()z [43.5]dr dr

where

v -+ Ksinp > 0
Kcos p

and

f(€) = Kb sin4p c

f () = Kb sin 4p cosp sin p(sin - 2Ksinp) [43.6]cos p K

Equating the right-hand terms of [43.5] to zero, one obtains the singular

points. If v > 1, singular points are absent. If v = 1, there is one sin-

gular point of a higher order representing the coalescence of two simple

singular points. If v < 1, there are two singular points.

Consider the last case. The coordinates of the singular points are

clearly 01 = sin- v, z = 0 and 02 =  
1 - 1z = 0. In forming the equations

of the first approximation, Section 18, it is assumed that f(o1) # 0, f(#~,)
0. Setting 0 = 1 + e, do = de and observing that

sin = sin ( 1 + E) z sin 0 1 + e cos 1

[43.5] then becomes

dE dz
d- d - ecos 1 + f(, 1)z [43.7]

The characteristic equation is S 2 - f(-1)S + cos o1 = 0, and its roots are

S1,2 - [f 1  + f 2( 1) - 4 cos.] [43.8]

According as the sign of f 2 (01) - 4 cos l 4 0 one has either a nodal point

or a focal point. In practice one usually encounters focal points. In such

cases the equilibrium is stable for f(01 ) < 0 and unstable for f(O1 ) > 0.

Following a similar procedure one finds that the second singular

point (21, z = 0) is always a saddle point. Thus there exist two types of

singularities situated on the 0-axis which have been already investigated in

Section 41. The only additional feature is the existence of a threshold

f(o) = 0, separating stability [f(o) < 0] from instability [f(o) > 0].
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It is to be observed that in practical problems the quantities K =

Eo/Vo, y = dEo/dio, and b may be considered as small quantities of the first

order. Furthermore, from expressions [43.2] one ascertains that c/K is also

small. Thus, generally, the value of f(o) in practice is small and can be

put in a form f(o) = yfo0 () where p is a small parameter. There is a certain

degree of arbitrariness in the choice of this parameter, depending on the

relative order of magnitude of the small quantities K, y, b, *.., character-

izing each particular case. Under these conditions, [43.5] can be put in the

form

d = z; d v - sin + fo()z [43.9]

The system [43.9] is conservative for p = 0 although non-linear and

can be analyzed by the method indicated in Section 40. The phase trajector-

ies are given by the equation

dz v - sine [43.10]

d z

which is readily integrated, giving

z = ±+ V2(cos + v¢ + h); h = constant [43.11]

This equation has the same form as [40.4].

The conclusions thus remain the same, viz: there are no trajector-

ies of the second kind, although there may be closed periodic trajectories

surrounding a vortex point and forming a continuum, "the island," limited by

separatrices issuing from saddle points. Physically this meanq that there

will be oscillations of the rotor about its uniform speed of rotation. These

oscillations, in general, are not of the "relaxation type" but-are ordinary

oscillations of a quasi-linear type, see Section 11, depending on the initial

conditions such as may arise from accidental disturbances. Oscillations of

this kind are not important, however, because they are rapidly damped out by

the squirrel-cage damping arrangement, the effect of which is not considered

here.

We shall now investigate the system [43.9] assuming it to approxi-

mate a conservative system, that is, taking # # 0 but very small. Physically

this means that the performance, instead of being synchronous, becomes asyn-

chronous, that is, the motor begins to "slip" and settles on a subsynchronous

speed.

The equation of phase trajectories becomes

dz v - sine + /fo(0) [43.12]
do z
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It is seen that when Izi is small

the trajectories differ but little

from those of [43.10], that is,

the separatrices still exist and

the area of the "islands" of peri-

odicity changes slightly. No tra- rfo()d <O

jectories of the second kind exist 0

in the neighborhood of the 0-axis.

Hence, in order to ascertain the

existence of closed trajectories

of the second kind, we have to in-

vestigate the regions of the cylin-

drical phase space when Iz is

large. Equation [43.12] in such a case becomes

Limit Cycle

Figure 43.3

dz

and the condition of periodicity of the second kind

z(2) - z(0) = =f(K)d K sin4p + 2ccosp sin2p 2r [43.13]o cos p

Two cases will be considered according to the sign of the right-hand term

of [43.13].

a. Kb sin 4p + 2c cos p sin2 p < 0. As a consequence wecos p
have z(2n) - z(0) < 0. Thus, when Iz is large, z > 0, the tra-

jectories approach the V-axis. On the other hand, when z is

small and greater than zero, they depart from the 0-axis as do

the trajectories of the conservative system [43.10] for any

z > 0. Since all point singularities are situated on the C-axis,

there exists at least one limit cycle of the second kind and it

is stable. The same reasoning applied to z < 0 shows that there

is no limit cycle.

b. Kb sin 4p + 2c cos p sin2 p > 0. Then z(2n) - z(0) > 0.
cos p

In this case the trajectories depart from the a-axis when Izl is

large, z > 0, and also when z is small, as was shown previously.

Hence, no closed trajectories of the second kind exist for z > 0.

If, however, z < 0, the trajectories approach the 0-axis when Izi
is large and depart from it when Izi is small. Hence, for z < 0,

there exists at least one limit cycle of the second kind.

This situation is illustrated in Figure 43.3 which is self-explanatory.

tfo(O)d > Oa1
SLimitCye

Li _miCyl
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By a more elaborate analysis not discussed here, involving the

theory of critical points, Vlasov has shown that, in addition to the point

singularities and limit cycles of the second kind, the operation of a syn-

chronous motor may also exhibit limit cycles of the first kind. In ordinary

industrial motors these steady oscillations of a "relaxation" type are gen-

erally eliminated by a suitable design. Vlasov succeeded in producing them

by means of a special experimental arrangement.
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